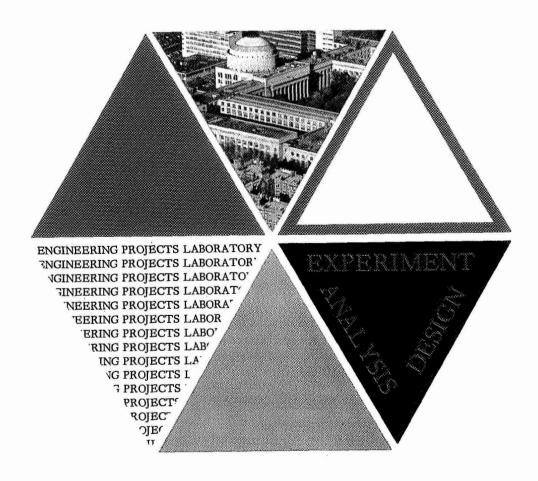
AN APPLICATION OF PREDICTOR DISPLAYS TO AIR TRAFFIC CONTROL PROBLEMS


William B. Rouse

DSR 70283-15

Engineering Projects Laboratory
Department of Mechanical Engineering
Massachusetts Institute of Technology

September 1970

NASA Grant NGL-22-009-002



# AN APPLICATION OF PREDICTOR DISPLAYS

TO

AIR TRAFFIC CONTROL PROBLEMS

by

WILLIAM BRADFORD ROUSE

B.S., University of Rhode Island (1969)

SUBMITTED IN PARTIAL FULFILLEMNT

OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF

SCIENCE

AT THE

MASSACHUSETTS INSTITUTE OF

TECHNOLOGY

September, 1970

| Signature  | of Author |
|------------|-----------|
| Certified  | by        |
| Accepted b | oy        |

## AN APPLICATION OF PREDICTOR DISPLAYS

TO

## AIR TRAFFIC CONTROL PROBLEMS

by

# William B. Rouse

Submitted to the Department of Mechanical Engineering

on

## August 24, 1970

In partial fulfillment of the requirement for the degree of Master of Science

This thesis is concerned with evaluating the feasibility of using a predictor display system to help solve terminal area air traffic control problems. A computer-based predictor display is proposed as an aid for the air traffic controller to use in guiding aircraft to the glidepath.

An air traffic control simulation was designed and constructed using two analog computers. One computer generated the aircraft while the other performed the prediction and display functions.

Two experiments were performed using this system. The first experiment consisted of guiding a single aircraft through its approach pattern. The second experiment consisted of guiding three aircraft through their approach patterns simultaneously.

The results of the subjects' performance of the experiments were used to study the learning process with and without the predictor display. An analysis of variance was performed. The predictor system was assessed considering such task components as error, error rate, task completion time, and length of prediction.

It was determined that learning, in most cases, was faster with the predictor display. However, the difference in performance with and without the predictor display decreased as learning proceeded. The predictor display helped to reduce errors, but not task completion time. A prediction which was too long and displayed more than the necessary amount of information increased task completion time. The prediction display significantly improved performance for the easier tasks while it did not significantly improve performance for the more difficult tasks.

Thesis Supervisor: Thomas B. Sheridan

Title: Professor of Mechanical Engineering

## ACKNOWLEDGEMENTS

I am indebted to Professor Thomas B. Sheridan who lent supervision and direction to this research. The enthusiasm and constructive suggestions of William L. Verplank during all phases of this work proved not only beneficial but often kept the author's spirit from flagging. The assistance and suggestions of Richard S. Sidell in programming the analog computer and analyzing the data was invaluable. Also, I would like to thank my wife, Sandra for her typing and patience.

This research was supported by National Aeronautics and Space Administration Grant No. NGL-22-009-002.

# TABLE OF CONTENTS

| Abstract  |           |                                 | 2          |
|-----------|-----------|---------------------------------|------------|
| Acknowle  | dgements. |                                 | 3          |
| Table of  | Contents  |                                 | 4          |
| Index to  | Figures a | and Tables                      | 6          |
| <b>~1</b> | -         | COMPAND DE                      | _          |
| Chapter   | I.        | SUMMARY                         | 8          |
| Chapter   | II.       | INTRODUCTION                    | 11         |
| Chapter   | III.      | THE AIR TRAFFIC CONTROL PROBLEM | 16         |
| Chapter   | IV.       | EXPERIMENTS                     | 26         |
|           | IV.A.     | Experiment I                    | 26         |
|           | IV.B.     | Experiment II                   | 31         |
| Chapter   | v.        | EQUIPMENT DESIGN                | 38         |
|           | v.A.      | Modeling aircraft               | 38         |
|           | V.B.      | Prediction and display          | 41         |
|           | V.C.      | Measuring performance           | 43         |
|           | V.D.      | Apparatus configuration         | 46         |
| Chapter   | VI.       | RESULTS                         | 53         |
| Chapter   | VII.      | DISCUSSION AND CONCLUSIONS      | 65         |
|           | VII.A.    | Learning                        | 65         |
|           | VII.B.    | Analysis of variance            | 66         |
|           | VII.C.    | Strategies                      | 68         |
|           | VII.D.    | Subjects' comments              | <b>7</b> 0 |
|           | VII.E.    | A conjecture                    | 71         |
|           | VII.F.    | Air traffic control             | 73         |
| Doforos   |           |                                 | 7/         |

| Appendix |                        | 76 |
|----------|------------------------|----|
| Α.       | Sample learning curves | 76 |
| В.       | Computer programs      | 79 |
| C        | Data                   | 07 |

# INDEX TO FIGURES AND TABLES

| Figure 1.  | Predictor display system 14      |
|------------|----------------------------------|
| Figure 2.  | Terminal control area 17         |
| Figure 3.  | Holding stack 20                 |
| Figure 4.  | Terminal facility queues 24      |
| Figure 5.  | Display for experiment I 27      |
| Figure 6.  | Data sheet for experiment I 30   |
| Figure 7.  | Display for experiment II33      |
| Figure 8.  | Data sheet for experiment II37   |
| Figure 9.  | Aircraft schematic 42            |
| Figure 10. | Prediction and display program44 |
| Figure 11. | Performance criteria program 45  |
| Figure 12. | ATC simulation 47                |
| Figure 13, | A/C control panel 48             |
| Figure 14. | Prediction control 49            |
| Figure 15. | Display with L = 0.0 50          |
| Figure 16. | Display with L = 20.0 51         |
| Figure 17. | Display with L = 40.0 52         |
| Figure 18. | Experiment II strategies69       |
| Figure 19. | Least-squares curve fit77        |
| Figure 20. | Approximate curve fit            |

| Table | I.    | Experimental sequences34                                                                                                                         |
|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Table | II.   | Learning parameters A <sub>1</sub> , A <sub>2</sub> , and A <sub>3</sub> , RMS fitting error, and mean of performance index (experiment I)58     |
| Table | III.  | Learning parameters A <sub>1</sub> , A <sub>2</sub> , and A <sub>3</sub> , RMS fitting error, and mean of task completion time (experiment I)59  |
| Table | IV.   | Analysis of variance results (experiment I) 60                                                                                                   |
| Table | v.    | Learning parameters A <sub>1</sub> , A <sub>2</sub> , and A <sub>3</sub> , RMS fitting error, and mean of performance index (experiment II)61    |
| Table | VI.   | Learning parameters A <sub>1</sub> , A <sub>2</sub> , and A <sub>3</sub> , RMS fitting error, and mean of separation error (experiment II)62     |
| Table | VII.  | Learning parameters A <sub>1</sub> , A <sub>2</sub> , and A <sub>3</sub> , RMS fitting error, and mean of task completion time (experiment II)63 |
| Table | VIII. | Analysis of variance results (experiment II).64                                                                                                  |

## I. SUMMARY

This research was concerned with the use of a predictor display system, an example of a man-computer system, to aid in the guiding of aircraft during their approach to the glidepath of a runway. Such a system would enable an airport to handle a larger volume of aircraft.

An air traffic control simulation was constructed using two analog computers. One computer generated the aircraft while the other computer performed the prediction and display functions.

Two experiments were performed. The first experiment consisted of guiding a single aircraft through its approach pattern.

Five subjects performed this task. For each subject there were ninety-six trials, i.e., all combinations of two initial conditions, three prediction lengths, and sixteen iterations. Performance was based on aircraft position error, error rate, and task completion time.

The second experiment consisted of guiding three aircraft through their approach patterns simultaneously. It was necessary to merge the aircraft into a specified sequence for the approach.

Three subjects performed this task. For each subject there were one-hundred and sixty trials, i.e., all combinations of four initial conditions, two prediction lengths, and twenty iterations. Performance was based on aircraft position error, error rate, task completion time, and error in maintaining the proper spacing between aircraft.

The learning process with each display was studied by fitting three parameter exponential curves to the data. In most cases, the learning process with the predictor display was faster than that

with the conventional system. However, the difference in performance with and without the predictor display decreased as learning proceeded.

An analysis of variance was performed to study the differences between the predictor and conventional displays. It was determined that the predictor display helped to reduce errors, but not task completion time which has a lower limit dictated by the dynamics of the system. A prediction which is too long and which displays more than the necessary amount of information can increase task completion times.

The strategies that the subjects used were investigated.

It was apparent that the subjects generated their own switch curves (decision time criteria) by which to give commands. Thus, the tasks could be related to optimal control problems.

Examination of the results showed that the predictor display significantly improved performance for the easier tasks while it did not significantly improve performance for the more difficult tasks. Using this result and the subjects's comment that the more difficult tasks often proved taxing, the idea was presented that an upper limit on the applicability of display aids exists. Very difficult tasks tax the operator to the point that he reverts to an intuitive level of performance and disregards the information presented by the display.

The feasibility of using a predictor display system to

help solve air traffic control problems was assessed. It was suggested that a digital computer with some decision making capability might be necessary to make the predictor display generally applicable. This notion was not pursued in this thesis but rather proposed as basis for future research.

## II. INTRODUCTION

As technology and the state-of-the-art advances, computers are gaining the capability to perform many tasks that man once considered solely his responsibility. Examples of such tasks include teaching and elementary decision making. However, many complex tasks still require the flexibility of the human decision maker. An example of this arises in the field of air traffic control. This example will be pursued in later chapters.

Although a human operator may be needed as part of a specific system, computer usage must not thereby be excluded from that system. In fact most complex tasks that require a man also have many facets of their operation that are better suited to computer control. Two questions arise from this situation. First, which tasks can man perform better than the computer and vice versa? Second and more important, which allotment of tasks produces the best overall system performance? The answer to these two questions may not be the same.

As an example, consider a task such that the summation of many subtasks produce a result upon which a human operator will base a decision. A computer may easily surpass the man in ablilty to perform most of the subtasks, but the result of summing the products of the subtasks may have little meaning to the human if he has not taken part in the intermediate steps of the process. Thus, performance of some of the subtasks may have to be delegated to the human in order that he can produce a proper decision based on the final result.

In view of the above, the problem can be simply stated as

that of determining the proper man-computer combination for whatever task is under consideration. This problem will not be totally considered within the confines of this thesis. The concern here will be restricted to one type of computer aid with respect to one specific task.

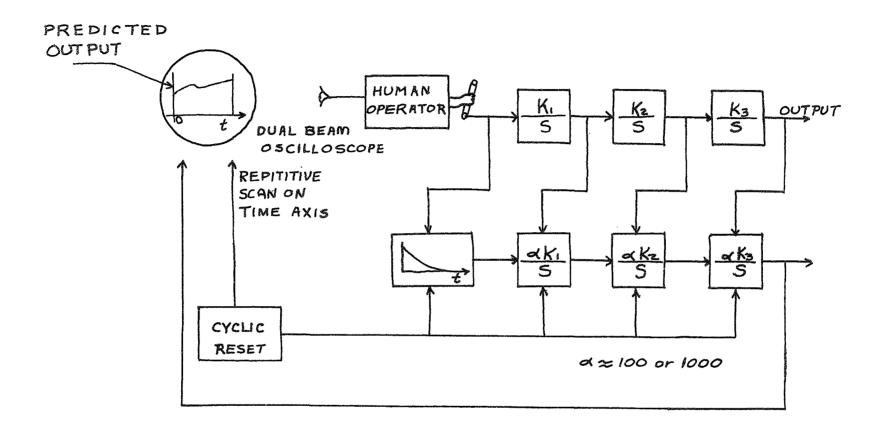
When the human operator controls low frequency high order dynamic systems, he must base his present decisions on what he thinks will be the future state of the system. This situation occurs because the operator's present inputs are subject to the lag in the system so that most of the effects of his present actions are delayed. The length of time that he must think into the future depends upon the speed and dynamic order of the system. The accuracy of his mental predictions depends on his experience with the system and knowledge of the inputs that the system will receive.

Computers far surpass man in the ability to make rapid repetitive calculations. Given a model of a dynamic system and its inputs, the computer could predict future states of the system with much more accuracy and speed. The human could then base his control decisions on the computer's extrapolations. This idea is not (1) new, it originated with Zeibolz and Paynter and was extensively (2) pursued by Kelley . The realization of this idea Kelley has termed the "predictor instrument" or "predictor display."

The principles upon which a predictor display is constructed are straight forward. A dynamic model of the system to be controlled is fabricated. Using the present state variables of the actual system as initial conditions, the model is repeatedly operated at a much faster rate than the actual system. Thus, the model predicts future states of (3) the system which can be displayed to the operator in various ways.

This concept may also be called "fast time simulation." The dynamic model of the system is thereby termed the "fast time model."

A predictor display system is illustrated in Figure 1. This system assumes that the operator returns his control to zero. This assumption will be discarded in later chapters.


Although the concepts of predictor displays are over fifteen years old, such displays have received little application. Adoption of predictor displays for use in aerospace control applications has (3,5,6) been considered , but seldom implemented. This may be attributed (4) to some questions that still exist about these displays .

- 1. How should two dimensional predictor displays be coded?
- 2. Is there an optimum prediction span, and if so what determines it?
- 3. How closely must the fast time model compare to the actual system?
- 4. How does the operator use such a system in effecting his response?

  (7,8,9)

Recent research has considered some of these points, but no general answers to all of these questions have been obtained. Answers to these questions will not be specifically pursued in this thesis. The main concern will focus on a different level. However, results of this research will be later discussed as it relates to these questions.

A predictor display can be viewed as an elementary computer aid. The computer performs calculations and the operator bases his decisions upon these results. At this level of computer aid, the computer performs none of the decision making. However, this



PREDICTOR DISPLAY SYSTEM (4)

possibility should not be excluded and will later be discussed.

To investigate this level of man-computer interaction, a single complex task has been chosen. The concern will be with the air traffic control task of merging aircraft as they approach an airport into a safe and efficient line of traffic. Before continuing with a discussion of this task, some background on the workings of air traffic control is necessary.

## III. THE AIR TRAFFIC CONTROL PROBLEM

It is common knowledge that the Air Traffic Control (ATC) system is having problems, but the specific details of the problems and their sources are poorly understood. A recent appraisal of the (10) state of ATC — showed that the problems are of various types and sources. These problems extend from those associated purely with engineering to financial and political considerations.

The problem of concern in this thesis is that of determining the role of the controller. Some solutions now being proposed include automation of the ATC system to the point that the controller becomes a passive and parallel element in the system. Proponents of such a solution, however, are quick to add that a controller is needed to run the system when unusual circumstances occur. Such unusual occurences might include damaged aircraft (A/C) in the approach pattern, stalled A/C on the runway, and pilots new to an airport and unfamiliar with the control system.

It appears that the controller cannot be subjugated to a standby role in ATC. He could not be expected to respond quickly and efficiently to emergency situations if he is not an active part of the system.

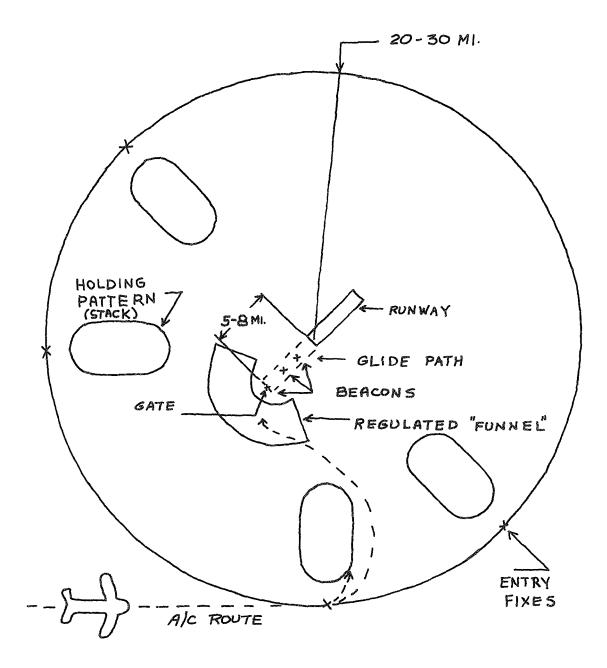
The solution seems to be the combining of talents of controller and computer, but the question of what the computer should do and what the man should do remains to be answered.

Before discussing a plan for considering this man-computer question, it is important to be aware of the controller's present role and the general operation of ATC system.

The national system of air routes and airports as it currently

exists is fairly well organized. This organization of the air system was basically accomplished between 1919 (when ATC rules were first considered) and 1945. Minor changes have occurred in the past 20 years, but innovation has seriously lagged behind growth.

The air system consists of several hundred thousand miles of airway defined in the sky by VOR and VORTAC, which are VHF omni range beacons. Currently, enroute A/C use the radial beams emitted by these beacons and fly from beacon to beacon along these radial paths.


A/C flying in opposite directions are separated by 1000 feet in altitude.

The U.S. is divided into many Air Route Traffic Control

Centers (ARTCC). Each of these has control of a geographical area,
e.g., New England. The ARTCC monitors all A/C in its area via radio
and radar. When an A/C leaves one ARTCC and enters another, the
controller of the area which the A/C is leaving "hands-off" the A/C to
the controller of the next area via telephone. The A/C then communicates
with the new ARTCC and receives such information as communication
frequencies, etc. The above procedure applies to enroute A/C
(those in transit and away from airport) only, which limits the ARTCC
control to those A/C at altitudes over 18,000 feet.

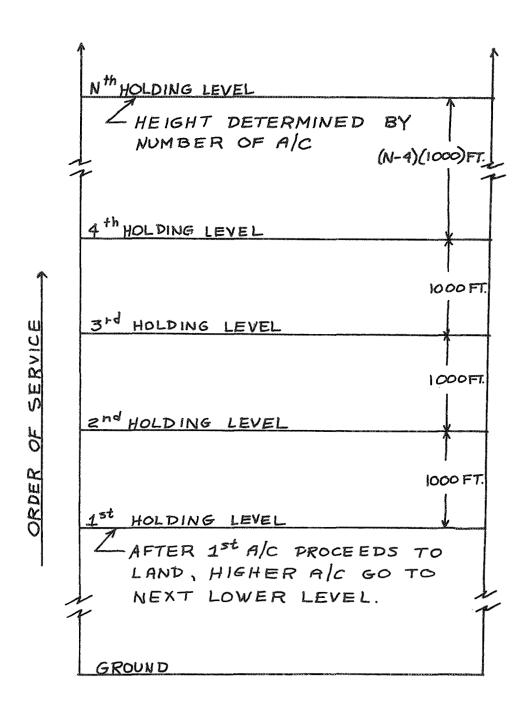
As a subset of each ARTCC and around each airport are Terminal Areas (TMA) which have responsibility for A/C at all altitudes in an area that extends radially for 20-30 miles around the airport.

Figure 2 is a sketch of a TMA. An A/C may enter the TMA through one of several entry fixes which are defined by radio beacons. At these points, the ARTCC controller hands-off the A/C to the TMA approach controller. The approach controller is aware that the A/C is due to arrive because he receives the flight plan of that A/C from its point



TERMINAL CONTROL AREA
FIGURE 2.

of departure. This flight plan contains such information as estimated time of arrival (ETA), cruising altitude, speed, etc. The flight plan is updated enroute if any great changes occur in data originally sent to the TMA. However, since the ETA is by definition only an estimate, the controller experiences random arrivals of A/C into the TMA.


Upon entering the TMA, the A/C can be instructed to do one of two things. Either the A/C can be advised to proceed to land, or can be instructed to join one of the holding stacks and wait to be cleared to land.

If he is told to proceed to land, he enters the regulated "funnel," enters the glide path and descends to the runway.

If he is ordered into a holding pattern, he joins the highest level of the appropriate stack, as shown in Figure 3, and cycles down the stack as the A/C in the lower levels leave the stack to land. When he reaches the lowest level of the stack, it then becomes his turn to land.

There are two basic situations in which an A/C will use an airport. Visual Flight Rules (VFR) are such that A/C fly on a "see and be seen" basis. Instrument Flight Rules (IFR) indicate that A/C are being guided onto the runway with use of various equipment.

IRF requires a great deal more use of the ATC system since it must in effect control the A/C. In the past, IFR use was limited to weather conditions of poor visibility, but increased density in airspace has resulted in most commercial carriers using IFR all the time when using high density airports. This accelerated use of IFR is one of the biggest problems in ATC. Naturally, this does not mean that IFR use should be reduced, but that the system should be



HOLDING STACK
FIGURE 3.

developed so as to have the capability of handling an ever-increasing IFR use.

When using the TMA under IFR, several aids enable the controlling of traffic. Holding patterns are established using radio beacons. Upon proceeding to land, the A/C uses an Instrument Landing System (ILS) to guide itself to the runway. Radio transponders define the glide path so as to enable the A/C to determine its position.

When an A/C is departing form a TMA, he files a flight plan with departure control, as previously mentioned. Departure control clears the A/C to use a taxiway. When a runway is available, the A/C is cleared to depart. Departure control remains in charge of the A/C until it is handed-off to the next control area as it leaves the TMA.

There are many safety standards which complicate the above procedures. In the air, A/C are required to maintain a 3 mile horizontal and 1000 foot vertical separation from all other A/C. When A/C reach the runway, a minimum separation of 1.5 minutes is usually required to allow the runway to be cleared for the next landing. For enroute A/C the minimum spacing requirements are somewhat greater (5 miles) because the greater amount of airspace allows a larger margin of safety. Thus, all of these standards as administered by the FAA are for safety's sake.

There are also departure separation standards. If two A/C are planning to fly the same course, their departure must be separated by at least 3 minutes. If their courses will diverge after 5 minutes in the air, the standard is 2 minutes, and, if their courses are completely different, the separation is 1 minute.

A/C could physically be flown much closer than these

standards require, but equipment that the ATC system uses has some inherent uncertainty. Radar is the main system used by ATC in controlling A/C. The accuracy possible with this equipment is (11) + .333 nautical miles for distance and + 2° for bearing. Using this data and a little trigonometry yields the result that at 20 miles from the airport, the controller knows only that the A/C is somewhere in an area of space 1.40 miles by .77 miles. ATC knows the A/C altitude only by what the A/C tells them. Using these figures, the separation standards seem quite realistic for A/C traveling at a couple of hundred miles per hour.

Often the controllers are skillful in avoiding situations where separation standards hinder operation. An example might be a faster A/C following a slower A/C. Here it is impossible to maintain the minimum standard constantly. When arriving A/C are too close or appear to be heading for that situation, the controllers instruct them to take courses which will delay them for a certain length of time. In other words, the A/C flies some pattern off course for a period of time so that when it rejoins the normal pattern, it has lost a desired amount of time and or distance and thus has not violated the explains these various delaying separation standards. Simpson patterns and their effectiveness. Porter has studied optimal strategies for these maneuvers. With respect to departures, the controllers usually sequence the departing A/C on the taxiway so that planes going in the same direction do not follow each other. This eliminates needless delay in meeting time separation standards.

There are many other pieces of navigational equipment in use today that are not discussed here. Basically, they are simply

variations of the equipment previously explained.

Communications between ATC and A/C is via radio. During

IFR situations at peak times, the frequencies available become dangerously overloaded. As an example, on an average flight from Washington to

New York with a flying time of 39 minutes, there are 55 separate
(13)

two-way voice communications on 11 different frequencies . Telephone and teletype are used to communicate between ARTCC's and TMA's.

The teletype is used to process flight plans. These are sent on paper

"flight strips" which the controller manually handles and arranges in order of expected arrival. As previously mentioned, the telephone is used during the hand-off procedure.

Operation of the system is based on a "first-come first-served"

basis with landing given priority over departures. Landings have

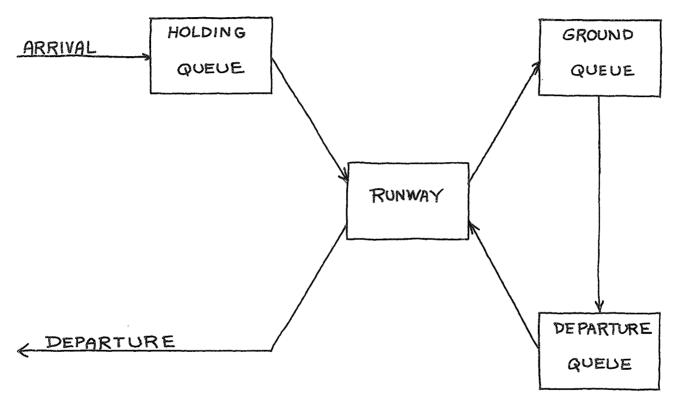
priority because of the increased costs for delays in the air as

opposed to those on the ground, and also for safety reasons. In

communications, ground transmissions have priority over A/C

transmissions. When the system is extremely busy, A/C are reduced to simply

(11)


being listeners since there are no channels available

(10)

The system may be modeled as a series of queues . The holding, ground and departure queues are displayed in Figure 4.

In this context, 'ground' means all those activities which take place on the ground exclusive of landing and departing, such as loading and unloading passengers, fuel, and baggage and performance of any necessary maintenance.

Thus far the discussion has been limited to airports that have only one runway. With a few exceptions, all the rules and procedures are the same regardless of the number of runways available.



TERMINAL FACILITY QUEUES
FIGURE 4.

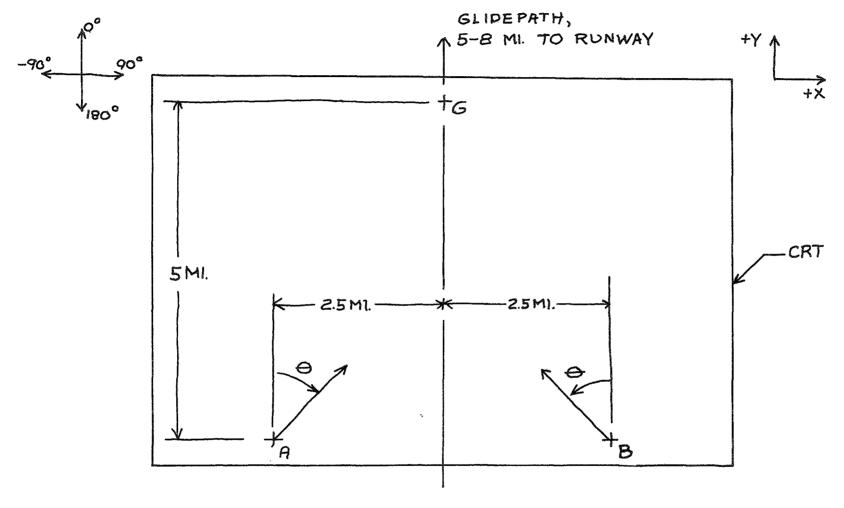
Many times multiple runways exist simply because of the variations in wind direction. If parallel runways are 5000 feet apart, then they can be used independently for departures and arrivals or for a mixture of both. Under IFR, the runway must have an ILS, but only a few of the busiest of the nation's airports have more than one. Therefore, capacity is lowered considerably when IFR is used in many airports that normally have multiple landing capability.

Thus, the ATC system is fairly complex and ladden with operating rules and restrictions. Many problems could be explored.

This study is concerned with the controllers effect on system performance. The importance of this investigation can be seen if one considers that the greatest cause of inefficiency in the ATC system is error resulting from equipment tolerances and inaccuracies (14) in A/C spacing caused by the controller .

One of the main purposes of this work is to determine how well a human operator can perform under the restrictions that the ATC system imposes and if a computer aid such as a predictor system can improve the operator's performance.

#### IV. EXPERIMENTS


with two goals in mind. First, concern was focused on ATC problems and predictor displays as a possible solution. With respect to this goal, the effect of predictor displays on system performance and the feasibility of such aids were the main considerations. The second and more general goal concerned the question of how the operator uses this computer aid to help make his decisions. In other words, if the operator performs better (worse) with a predictor display, what causes the improvement (degradation)? Answers to this question may allow results obtained from a specific example (ATC) to be generalized to predict the outcome of applying such displays to other complex problems such as high speed merging of automobiles.

## A. Experiment I

through the vicinity of the regulated "funnel" to the gate of the glidepath.

Beginning with only one A/C served two purposes. It enabled the five
subjects to develop some proficiency with a simplified ATC task. Also,
this initial experiment allowed study of the basic ATC task unencumbered by
inter-aircraft constraints such as separation standards. Inter-aircraft constraints were studied via an experiment that will later be discussed. Figure
5 illustrates the display arrangement used for this first experiment.

The single A/C being considered could have initial states A or B with initial
headings of 45°, 90°, -90°, or -45° as based on the coordinate system
shown in the figure. The initial velocity was always 180 mph. The subject's
task was to guide the A/C to point G (the gate) subject to the constraints



DISPLAY FOR EXPERIMENT I

that the A/C should cross G at 180 mph with a bearing of 0. degrees.

If the velocity was below 150 mph or above 210 mph, the A/C was not permitted to continue its approach. It was assumed that once the A/C crossed G, it was quided the remainder of the distance to the runway by an ILS system.

The subject accomplished this task by giving bearing and speed commands to the pilot. The experimenter acted as the pilot in an A/C with a quasi-autopilot system. The pilot used commands given to him by the controller to set two dials for thrust and bearing respectively, which controlled the A/C. These inputs then operated upon the dynamics of the A/C and the commands were achieved. This type of system minimized the use of any strategy on the pilot's part. The reason for including a human operator as a pilot was based on the necessity of the controller being able to use voice commands as he would in any actual ATC system.

The predictor system displayed an X-Y trajectory on the screen.

The Z coordinate (altitude) was not considered. For this experiment,

predicted trajectories of 0.0, 20.0, and 40.0 seconds were used. A trajectory

of length 0.0 seconds simply refers to a conventional system with no

predictor. During each run of the experiment, the subject was told the

length of predictor that he would use. In other words, he could not choose

among them.

The time prediction gave information to the controller in two ways. The shape of the prediction indicated the path of the A/C to a future position. The contours of this path displayed the angular velocity of the A/C. The length of the path was relative to the speed of the A/C. Besides the information obtained from the shape and length of the prediction, the operation also received feedback from the pilot as the commands were executed. This feedback consisted of acknowledgement of the

command and verification when the maneuvers were completed, The pilot also answered any specific inquiries by the controller.

For this experiment as well as the next, measures of performance were developed that reflect the relative importance of various aspects of the situation under investigation. Thus, while task completion time was measured, the errors in arriving at the gate were also important.

The performance index that the subject was to minimize for this experiment was

PI = t + 
$$|x_f| + |x_f| + x_f x_f$$
, (4-1)

where

t = task completion time

 $X_{f} = errol at the gate$ 

X<sub>f</sub> = error rate at the gate

The error rate is a measure of the angle at which the A/C crosses the gate. Actually, the angle is,

$$\Theta_{f} = 1 - \tan^{-1} \frac{\dot{Y}_{f}}{\dot{X}_{f}} \qquad (4-2)$$

but since  $Y_f$  was constrained to be in the neighborhood of 180 mph,  $X_f$  was a reasonable measure. The fourth term of the index is sensitive to the derivative of the error. If error is decreasing then the term subtracts from the score. This occured whenever  $X_f$  and  $X_f$  were of opposite signs which indicated that the A/C was heading towards the gate.

The units used for t were hundredths of minutes.  $x_f$  and  $\dot{x}_f$  were measured in arbitrary error units on a linear scale of -100 to 100, where 100 equals 3.75 miles and 60°, respectively.

Scores were compiled on data sheets as shown in Figure 6. The t,  $x_f$ , and  $x_f$  numerics were given to the subject at the end of each run and

| SUBJECT: DATE: |                |       |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|----------------|----------------|-------|----------------|---------------------|-------------------------------|---|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1              | 2              | 3     | 4              | 5                   | 6                             | 7 | 8         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10       |
| POS.           | θ <sub>i</sub> | PREDL | x <sub>f</sub> | 5<br><sup>*</sup> f | x <sub>f</sub> * <sub>f</sub> | t | 141 + 151 | 6/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PI=7+8+9 |
| A              | 45             | 0.    |                |                     |                               |   |           | A CONTRACTOR OF THE CONTRACTOR |          |
|                |                | 20.   |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                |                | 40.   |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                | 90             | 40.   |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                |                | 20.   |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                |                | 0.    |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| В              | -90            | 0.    |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                |                | 20.   |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                |                | 40.   |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                | -45            | 40.   |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                |                | 20.   |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                |                | 0.    |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| A              | 90             | 0.    |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                |                | 20.   |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                |                | 40.   |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                | 45             | 40.   |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                |                | 20.   |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                |                | 0.    |                |                     |                               |   | Į         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| В              | -45            | 0.    |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                |                | 20.   |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                |                | 40.   |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                | -90            | 40.   |                | :                   |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                |                | 20.   |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                |                | 0.    |                |                     |                               |   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |

DATA SHEET FOR EXPERIMENT I (3/4 SIZE)
FIGURE 6.

he then calculated his own PI. In this way the subject was able to see the components of his score immediately after each run.

For this experiment, five subjects were used: three male undergraduates, one male graduate student, and one female secretary. Each worked four evenings and performed the task a total of 96 times. Each subject was allowed as many practice runs as he desired during the first evening. For the remainder of the sessions, only one practice run was permitted before the beginning of scored runs. They were paid \$2.25 per evening. Thus, their hourly wage depended on how fast they could complete the evening's work. As an incentive, a \$500 bonus was given to the subject with the lowest average score and the subjects were told that only the best subjects from the first experiment would be retained for the more lucrative second experiment.

The experimental set-up for this experiment was kept very simple. The subject did not sit in a darkened booth. Both he and the experimenter sat near each other in an open room and commands were simply voiced without the aid of any audio equipment. The above atmosphere was consonant with the purpose of this experiment.

The results of this experiment as well as illustrations of the simulation equipment used will be discussed in later chapters.

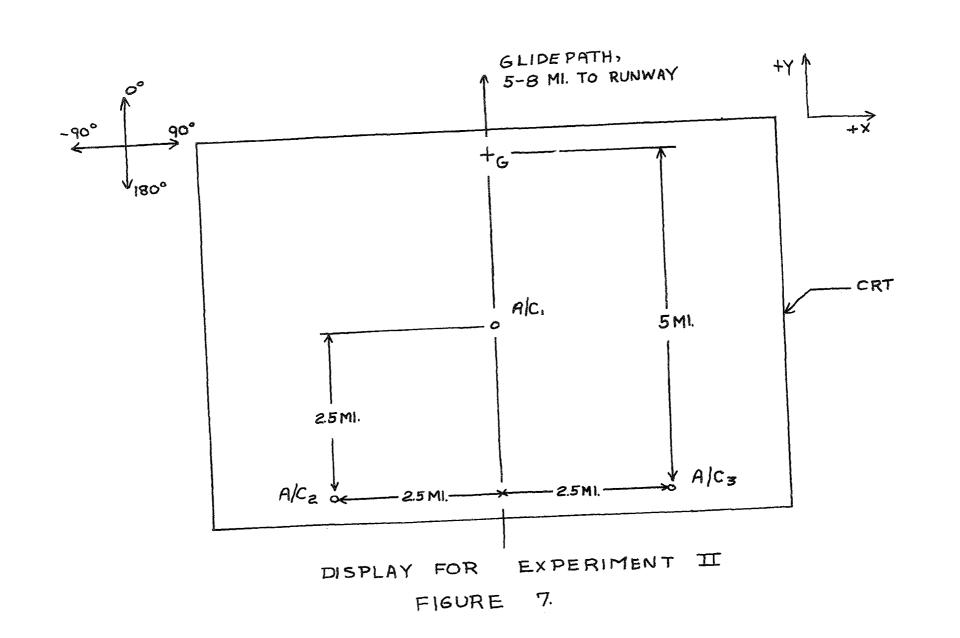
## B. Experiment II

The second experiment was designed to investigate the interaction of A/C in the terminal area. The controller's task was to merge 3 A/C into a given sequence so that they traversed the funnel to the gate in a minimum time subject to the same speed and bearing constraints as used during experiment one and such that no A/C was ever within 3 miles of another A/C. Figure 7

illustrates the experimental display. A/C<sub>1</sub> always had an initial heading of 0°. A/C<sub>2</sub> had either a 45° or 90° initial heading. A/C<sub>3</sub> had either a -45° or -90° initial heading. The initial velocity for all A/C was always 180 mph. These initial conditions yield 4 combinations of initial states for the system.

The subject was told to guide the A/C in such a way as they would cross the gate in the sequence  $A/C_1$ ,  $A/C_2$ ,  $A/C_3$ . The initial state had an effect on the difficulty of the task; especially the mandatory landing of  $A/C_2$  before  $A/C_3$ . As will be seen later, it often would have been easier to land  $A/C_3$  before  $A/C_2$ . However, task difficulty does not always dictate the priorities given to the landing of A/C.

The task could be accomplished with predictor trajectories of length 0. or 20. seconds. Combining the 2 possible predictor lengths


(0.0 sec. and 20. sec) with the 4 possible initial states yields 8 variations of the experiment. Four different sequences of these variations were used as experimental treatments. They appear in Table I. The subjects performed 2 sequences per session.

The subject could give only speed commands to  $A/C_{\underline{a}}$ , while he could give speed and bearing commands to  $A/C_{\underline{a}}$  and  $A/C_{\underline{a}}$ . As during the first experiment, the A/C were piloted by the experimenter.

The performance index used for this experiment was

$$PI = t + |x_{f}|_{2} + |\dot{x}_{f}|_{2} + \frac{x_{f2} \dot{x}_{f2}}{|x_{f}|_{2} + |\dot{x}_{f}|_{2}} + |x_{f}|_{3} + |\dot{x}_{f}|_{3} + \frac{x_{f3} \dot{x}_{f3}}{|x_{f}|_{3} + |\dot{x}_{f}|_{3}} + .015 \int_{0}^{t} \dot{x}_{f} (d_{ij}) dt$$

$$|x_{f}|_{3} + |\dot{x}_{f}|_{3}$$
(4-3)



| SEQUENCE 1 |                  |                  | SEQUENCE 2 |                  |                  | SEQUENCE 3 |                  |                  | SEQUENCE 4 |                  |                  |
|------------|------------------|------------------|------------|------------------|------------------|------------|------------------|------------------|------------|------------------|------------------|
| L          | A/C <sub>2</sub> | A/C <sub>3</sub> |
| 0.         | 90               | -90              | 20.        | 45               | -90              | 0.         | 45               | 45               | 20.        | 90               | -45              |
| 20.        | 90               | -90              | 0.         | · 45             | -90              | 20.        | 45               | -45              | 0.         | 90               | 45               |
| 20.        | 45               | -90              | 0.         | 45               | -45              | 20.        | 90               | -45              | 0.         | 90               | -90              |
| 0.         | 45               | -90              | 20.        | 45               | -45              | 0.         | 90               | -45              | 20.        | 90               | -90              |
| 0.         | 90               | -45              | 20.        | 90               | -90              | 0.         | 45               | -90              | 20.        | 45               | -45              |
| 20.        | 90               | -45              | 0.         | 90               | -90              | 20.        | 45               | -90              | 0.         | 45               | -45              |
| 20.        | 45               | -45              | 0.         | 90               | -45              | 20.        | 90               | 90               | 0.         | 45               | -90              |
| 0.         | 45               | -45              | 20.        | 90               | -45              | 0.         | 90               | -90              | 20.        | 45               | -90              |

EXPERIMENTAL SEQUENCES

TABLE I

where,
$$f(d_{ij}) = \begin{cases} 3 - d_{ij} & d_{ij} \angle 3 \text{ miles} \\ 0 & \text{otherwise} \end{cases}$$
(4-4)

and,

d = the distance between the i<sup>th</sup> and j<sup>th</sup> A/C.

The use of the first 7 terms of the index was explained with the first experiment. The final state of  $A/C_1$  was not included because it would have always been zero since bearing commands could not be given to this A/C. The last term of the index, henceforth called the integral term, penalized the subject whenever any A/C were closer than 3 miles. The .015 was used to scale this term to a reasonable proportion with the other terms. This scale was such that  $d_{ij}$ 's of much less than 3 miles penalized the subject to a great extent (because  $f(d_{ij})$  was large and t was long), and  $d_{ij}$ 's slightly less than 3 miles only penalized the subject a small amount. The generation of this numeric will be discussed in the next chapter.

This index allowed the subject several trade-offs. If the A/C are brought in very close trgether, then t is small but  $f(d_{ij})$  is high. If the A/C are spaced far apart for the approach, t is large and  $f(d_{ij}) = 0$ . Thus, the subject's task was to develop a strategy that compromised among all of the factors and gave him a low score.

An additional constraint was added to the above PI besides the speed constraints previously discussed. If any A/C crossed the gate with  $|X_f| > 20$ , the run was started over. The reasoning for this addition will be explained in a later chapter as it is contingent on some early results.

Three A/C were used for this experiment because that was the minimum number that retained all of the basic characteristics of the ATC task.

This task essentially amounts to the problem of keeping  $A/C_2$  3 miles behind  $A/C_1$  and 3 miles in front of  $A/C_3$  and performing the whole operation in a minimum of time. More A/C would have certainly complicated the subject's task but they would not have added any new facets of the ATC problem to study.

Scores were compiled on data sheets as shown in Figure 8.

The variables of the index were given to the subject and he performed the manipulations to obtain PI. Since this data sheet was fairly complicated, a template was made that was placed over the sheet and allowed much quicker calculation of the scores.

Three subjects were used for this experiment: two male undergraduates and one male graduate student. They each worked 10 evenings and performed 2 sequences each evening. Each subject was allowed as many practice runs as he desired during the first evening. For the remainder of the sessions, only one practice was permitted before the beginning of scored runs. Their pay for each evening equaled \$6.00 minus their average score for the evening. Thus, their hourly wage was determined by how well they did and how fast they worked. As an additional incentive, a \$10.00 bonus was given to the subject who most improved his performance over the first experiment.

The experimental atmosphere during this experiment was more formal than that of the first experiment. The subject sat in a darkened booth with the screen. He relayed his commands to the pilots with a microphone.

The results of this experiment as well as the other will be presented and discussed in a later chapter. The design of the simulation equipment will be presented in the next chapter.

| SUBJEC | T:               | SEQUENCE:        |                |                |                               |           | DATE: |                |                |                               |            |       |    |                       |                        |
|--------|------------------|------------------|----------------|----------------|-------------------------------|-----------|-------|----------------|----------------|-------------------------------|------------|-------|----|-----------------------|------------------------|
| 1      | 2                | 3                | 4              | 5              | 6                             | 7         | 8     | 9              | 10             | 11                            | 12         | 13    | 14 | 15                    | 16                     |
| PREDL  | A/C <sub>2</sub> | A/C <sub>3</sub> | х <sub>2</sub> | x <sub>2</sub> | x <sub>2</sub> x <sub>2</sub> | 141 + 151 | 6/7   | х <sub>3</sub> | x <sub>3</sub> | x <sub>3</sub> x <sub>3</sub> | 191 + 1101 | 11/12 | t  | $\int_{0}^{t} d_{ij}$ | PI=7+8+<br>12+13+14+15 |
|        |                  |                  |                |                |                               |           |       |                |                |                               |            |       |    |                       |                        |
|        |                  |                  |                |                |                               |           |       |                |                |                               |            |       |    |                       |                        |
|        |                  |                  |                |                |                               |           |       |                |                |                               |            |       |    |                       |                        |
|        |                  |                  |                |                |                               |           |       |                |                |                               |            |       |    |                       |                        |
|        |                  |                  |                |                |                               |           |       |                |                |                               |            |       |    |                       |                        |
|        |                  |                  |                |                |                               |           |       |                |                |                               |            |       |    |                       |                        |
|        |                  |                  |                |                |                               |           |       |                |                |                               |            |       |    |                       |                        |
|        |                  |                  |                |                |                               |           |       |                |                |                               |            |       |    |                       |                        |

DATA SHEET FOR EXPERIMENT II (3/4 SIZE)
FIGURE 8.

### V. EQUIPMENT DESIGN

Equipment was needed to perform three functions for this research.

A/C had to be simulated and controlled. Trajectory predictions had to

be computed and displayed. Also, the integral term of equ. 4-3 had to be

generated.

# A. Modeling A/C

To generate  $\Lambda/C$ , a simple second-order model was chosen Each direction (x and y) was generated separately and the governing equations were,

$$M\ddot{x} + (F_D)_x = (F_T)_x$$

$$M\ddot{y} + (F_D)_y = (F_T)_y$$
(5-1)

where

F<sub>m</sub> = thrust

F<sub>D</sub> = drag

M = mass.

Effects of wind were neglected and as can be seen from 5-1, the various control surfaces of an A/C were not considered. The model is a simple second-order, point-mass, viscously damped system.

To determine the parameters for equation 5-1, a Boeing 707 aircraft was assumed. From Taylor (15), the following characteristics were obtained:

w = weight = 247,000 lbf

 $F_{T}$  thrust = maximum of 18,000 lbf per engine ( 4 engines)

 $V_S = stall speed = 121 mph$ 

 $S = wing area \approx 3,650 ft^2$ 

M = mass = 7,680 
$$\frac{1 \text{bf sec}^2}{\text{ft.}}$$
  
 $0 \le F_{,p}(t) \le 72,000 \text{ lbf}$  (5-2)

The drag was assumed to be linear. A least squares fit of a linear model was used. Using the drag-speed curves as they appear in Fischel (16) and assuming a recommended approach of 1.5  $V_S$  , then for  $\frac{W}{S}$  = 67.8, the following linear model was determined,

$$F_{D} = 131 \text{ V}$$
 (5-3)

where

V = velocity in the direction of interest.

The reason for using a least squares fit of Fischel's data is not obvious. A Taylor series linearization would be more accurate if an operating point could be defined. However, generating each dimension of the A/C separately does not allow the definition of an operating point. Since  $\dot{x}$  and  $\dot{y}$  can range from 0. - 240. mph as a turn is being executed, any drag model that is used must allow for  $(F_D)_x = 0$  when  $\dot{x} = 0$  and similarly for the y direction. Dynamic drag curves are not defined below the stall speed and therefore an operating point below 121 mph could not be considered. If a point above 121 mph was used, then when one direction of the A/C was operating below 121 mph, it would move backwards. Thus, the least squares technique was used.

The remainder of the development of 5-1 will consider only the X direction since the Y direction equation will be exactly the same. Combining the above parameters with 5-1,

$$7680\ddot{x} + 13t\dot{x} = F_{x}(t),$$
 (5-4)

where X was assumed to be the indicated airspeed of the A/C. This assumed that while Fischel used "calibrated" airspeed for his drag curves, that

the use of indicated airspeed would at most be a translating factor and would not greatly effect the slope characteristics of the drag curves.

To scale 5-4 for simulation, redefine  $F_x(t)$  so that,

$$0 \stackrel{\checkmark}{=} F_{\chi}(t) \stackrel{\checkmark}{=} 1.0.$$
 (5-5)

This changes 5-4 to

$$7680 \times + 131 \times = 72,000 F_{x}(t)$$
 (5-6)

Dividing,

$$\ddot{X} + .0171 \ \dot{X} = 9.38 \ F_{x}(t)$$
 (5-7)

Assuming,

$$X_{\text{max}} = 220 \text{ mph} = 320 \frac{\text{ft}}{\text{sec}}$$

$$X_{max} = + 2.5 \text{ miles} = 13,200 \text{ ft.}$$

and using scale factors,

 $a_v = velocity scale factor = 320$ 

 $a_{p}$  = position scale factor = 13,200

equation 5-7 becomes,

$$\ddot{X} + 5.46 \ \dot{X} = 9.38 \ F_{\chi}(t)$$
 (5-8)

Equation 5-8 is scaled for simulation without amplifier saturation but the time constant of the system has been lowered considerably. Multiplying the two constants in 5-8 by 1/320 returns the time constant to the correct value without changing the scaling. Therefore,

$$X + .0171 X = .0293 F_{x}(t)$$
 (5-9)

The thrust for each direction of A/C operation,  $F_x(t)$  and  $F_y(t)$  (or  $(F_D)_x$  and  $(F_D)_y$  respectively), follow the equation,

$$F = (Fx^{2}(t) + Fy^{2}(t))^{1/2}$$
 (5-10)

where

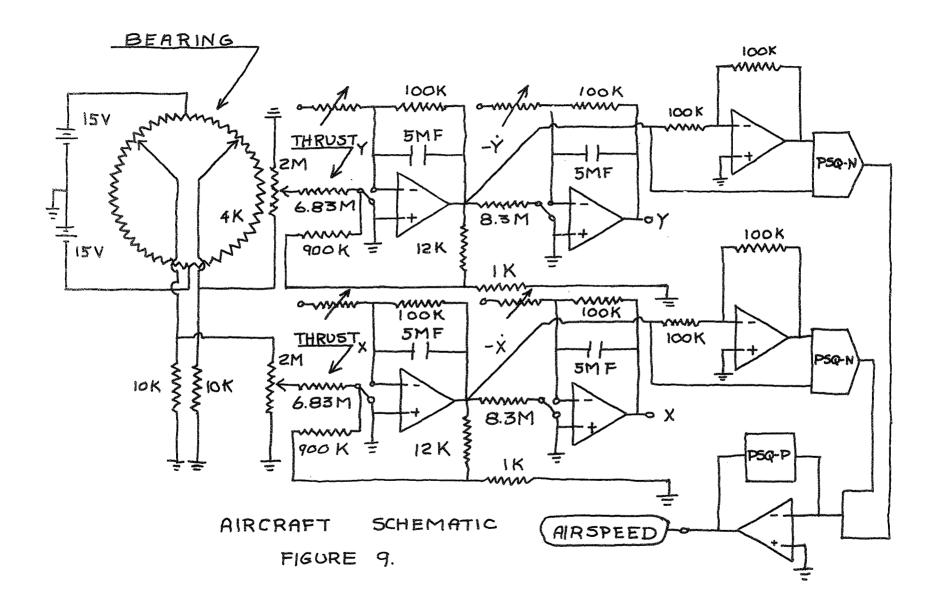
F= the magnitude of the total A/C thrust.

Thus, the directions of A/C motion are linked by the interaction of their individual thrust components. The control of each A/C was accomplished with a combination of a linear potentiometer and a sine/cosine potentiometer. The linear potentiometer controlled the magnitude of the thrust. The sine/cosing potentiometer controlled the angle of the thrust and therefore the bearing of the A/C. For example, if the linear potentiometer was set at .50 and the sine/cosine potentiometer was set at 60° (see coordinate system used on Figures 5 and 7), then  $Fx(t) = .50 \cos 30^{\circ}$  and  $Fy(t) = .50 \sin 30^{\circ}$  which satisfies 5-10.

To aid the pilot in flying the A/C , an airspeed indicator was used that read airspeed according to

$$V = (\dot{x}^2 + \dot{y}^2)^{-1/2} \tag{5-11}$$

where


V = airspeed.

A complete schematic of an aircraft appears in Figure 9. Further discussion of some aspects of this circuitry can be found in the Philbrick manual  $^{(17)}$ .

An analog computer was constructed which contained three of the A/C described by Figure 9. Each of these could be operated independently. This constituted the A/C generation portion of the ATC simulation. Illustrations of this equipment will appear at the end of this chapter.

### B. Prediction and Display

Prediction and display of A/C were accomplished with an EAI 680 analog computer. Three fast time A/C models were programmed on the 680. Each of the three were used to predict future trajectories of one of



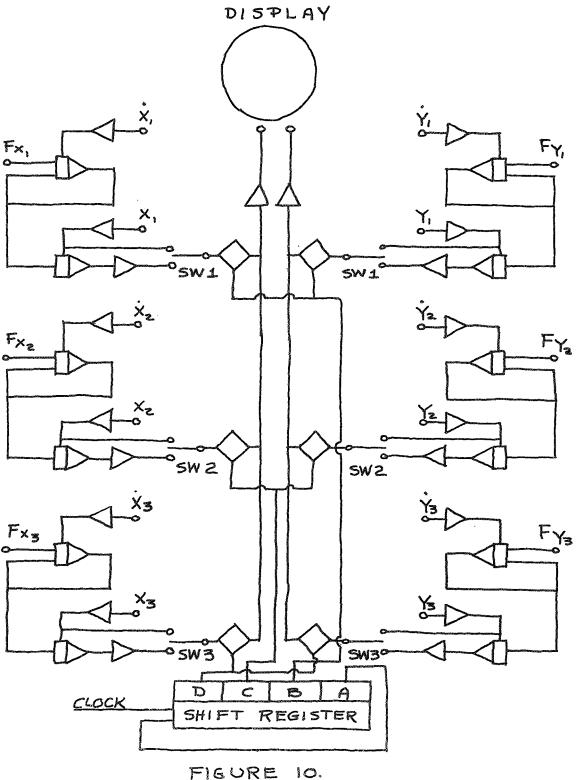
of the real time A/C. As explained in chapter II, the present state of the real A/C was used as initial conditions upon which the fast time A/C based its predictions. The A/C generator and the 680 where connected by a shielded cable.

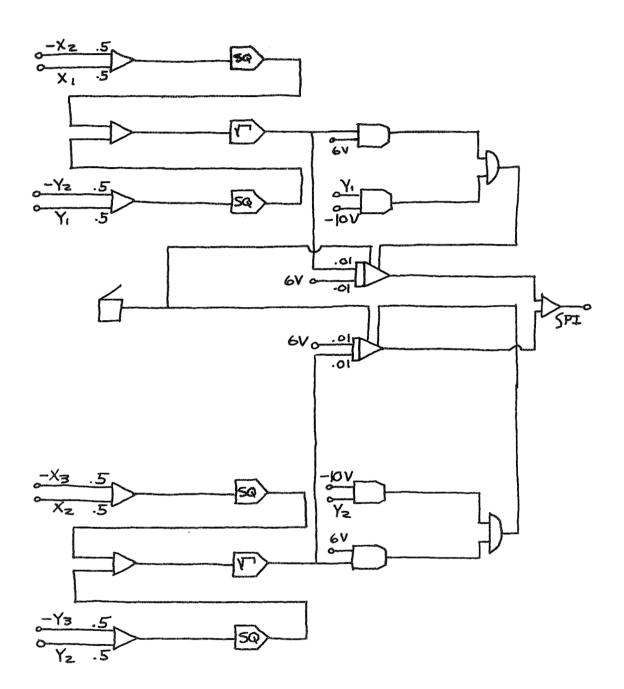
It is important to note that only one fast time A/C is needed if sufficient multiplexing capability is available to allow rapid switching of initial conditions of this single model. The need for only one fast time A/C is important if the prediction concept is to be feasible in a terminal area where there are many A/C.

Use of a ring shift register on the 680 allowed sequential display of the A/C on the 680. The shift register simply sequenced repetitively through the outputs of each A/C (a position) very rapidly.

The prediction and display program for the 680 appears in Figure 10. The potentiometer settings for inputs and feedback of the A/C were the same as those for the real time A/C since the 680 has an independent time scale control.

The difference between Figures 1 and 10 should be noted.


The predictor of Figure 1 assumes that the operator returns his control to the equilibrium point (the exponential portion of the diagram). As previously discussed, there is no equilibrium point for the A/C system.


Thus, this portion of a conventional predicter system was eliminated.

### C. Measuring Performance

The generation of the integral term of 4-3 was accomplished on the 680. A combination of comparators and gates were used such that the two ranges of 4-4 were determined and  $f(d_{ij})$  calculated and integrated. The program to accomplish this appears in Figure 11.

# PREDICTION AND DISPLAY PROGRAM





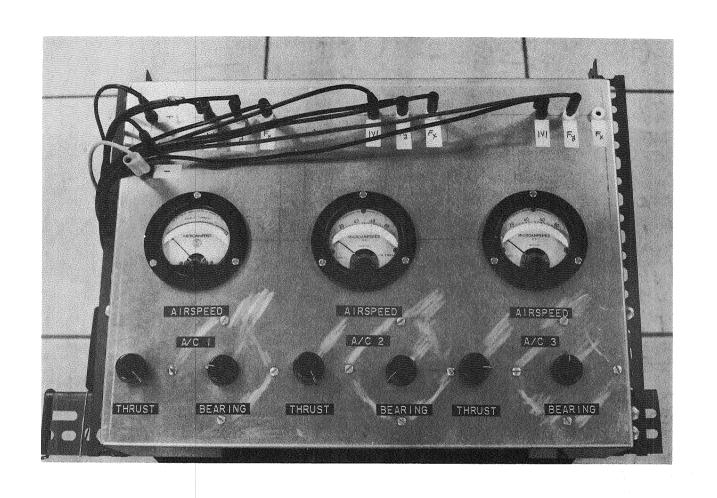
PERFORMANCE CRITERIA PROGRAM
FIGURE 11.

### D. Apparatus Configuration

The following photographs illustrate the system and the resulting displays. Figure 12 pictures the entire simulation system. The equipment rack on the left is the A/C generator with the A/C controls to its right. The EAI 680 and the display can be seen in the background. During the second experiment the display portion of the system was surrounded by a darkened booth and the subject communicated with the pilot by a microphone.

Figure 13 is a close-up of the A/C control panel. Each A/C had independent thrust and bearing control. The thrust knob controlled the magnitude of the thrust and the bearing knob apportioned it to each A/C dimension. It is important to note that the bearing knob did not indicate the present heading of the A/C, but that bearing to which the A/C was proceeding. The pilot had no feedback concerning his present heading other than that supplied by the controller.

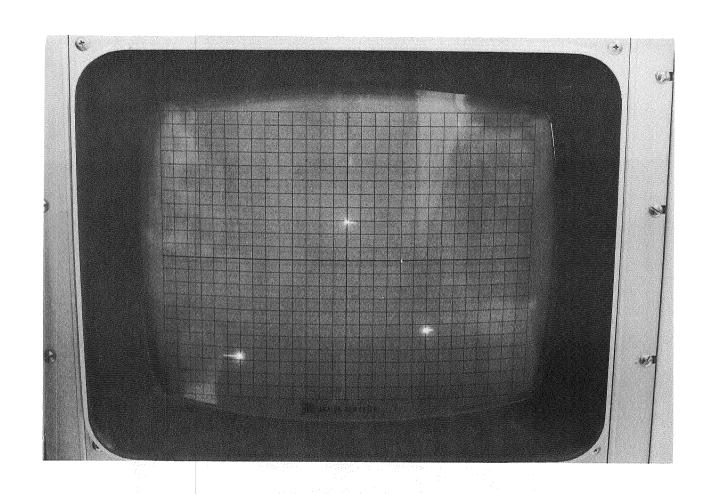
The box was connected to the 680 with a shielded cable. The subject operated the box, but the settings were dictated by the experimenter.


The length of the predictions were set on the 680.

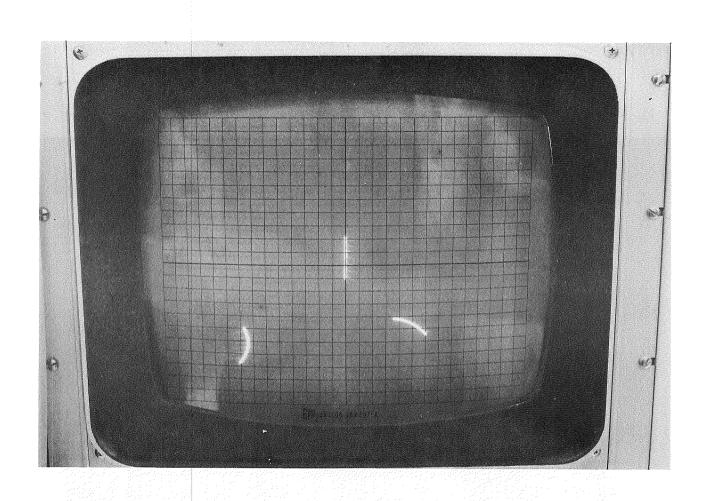
Figures 15, 16, and 17 are typical displays of length 0., 20, and 40 seconds respectively. The position of the real A/C is at the bottom of the prediction. The trajectories indicated what would happen to the A/C during the next 0., 20, or 40 seconds if its control was unchanged.

It now remains to discuss how the subjects performed with the equipment during the experiments.

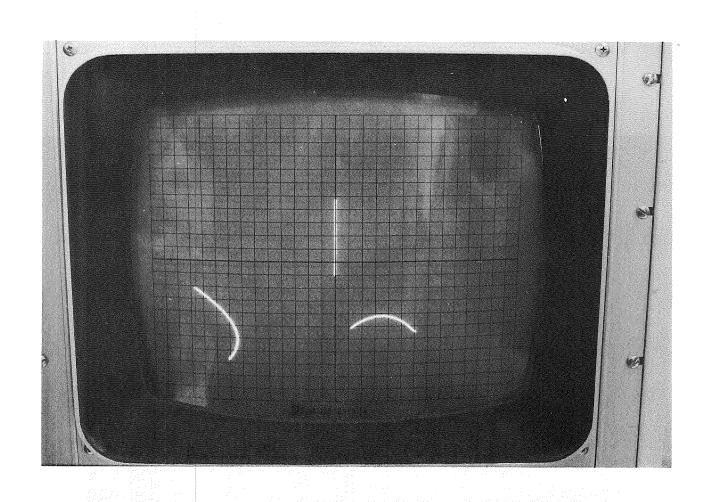



ATC SIMULATION FIGURE 12.




A/C CONTROL PANEL FIGURE 13.




PREDICTION CONTPOL FIGURE 14.



DISPLAY WITH L=0.0
FIGURE 15.



DISPLAY WITH L=20.0 FIGURE 16.



DISPLAY WITH L=40.0 FIGURE 17.

### VI. RESULTS

This chapter presents the results of the analyses performed with the data gathered during the experiments. Discussion of these results and conclusions will follow in the next chapter.

A goal of these analyses was to determine whether a predictor display produces significantly better performance than a conventional display does. A more general goal was that of determining why a predictor display might be different from a conventional display.

With these goals in mind, data was collected by component scores and not as a single score. As discussed in Chapter IV, the subjects calculated their own total score from the components using equations
4-1 and 4-3 during experiments I and II respectively. While this enabled subjects to know how each component of the task affected his final score, it also allowed separate analyses to be performed on each of these components. This allowed a determination of the portions of the task which the predictor system was effecting. Task components studied included aircraft position error, position error rate, task completion time, and separation error.

Experiments I and II used two and four different initial conditions respectively. Thus, six different tasks were investigated. The differences between these tasks will later be discussed and they will be ranked in order of difficulty.

The procedure used for this analysis was analysis of variance.

This type of analysis was designed to study experiments where several variables can influence the outcome. The total procedure will not be discussed here as several texts provide good presentations of this

material (18, 19).

The hypothesis used is that two (or more) samples come from the same normally distributed population. By analyzing the components of variance of the data, we accept or reject this hypothesis. The components of variability for these experiments were:

- 1. Between displays
- 2. Between subjects
- 3. Interaction between displays and subjects
- 4. Within the groups of displays and subjects.

The hypothesis is tested using variance ratios (F-ratios) of the various components of variability as explained in the references. If the F-ratio is large (21), the hypothesis is rejected and it is assumed that the samples came from different normal populations. The magnitude of the F-ratio necessary for rejection depends on the risk of making a wrong decision that the analyst is willing to accept. One minus the probability of error is termed the significance level. Typical significance levels are .70, .90, and .95.

For this analysis, the rejection of the hypothesis meant that the performance with the various display systems was significantly different from what would occur by chance if the two displays were identical.

If it was determined that one display was better than another, the difference between the arithmetic means of the scores with each display was used as a measure of this difference.

A basic assumption necessary to use the analysis of variance is that the data is normally distributed. However, data collected during these experiments included the learning process through which the subjects went. In fact, the nature of the ATC task was complicated to the point

that the subjects' scores never reached an asymptote. Thus, the luxury of throwing away all data taken before the task was completely learned could not be afforded. This problem was solved by fitting an exponential learning curve to the data and then subtracting it from the data. This served two purposes. It removed the learning bias from what could then be assumed normally distributed data. Also, this process allowed a study of the learning process with each type of display.

A least-squares fit of an exponential curve was used. The exponential had three parameters,

$$y = A_1 + A_2 e^{A_3 T_1}$$
, (6-1)

where,

 $A_1$ ,  $A_2$ ,  $A_3$  = the parameters  $T_i = \text{the number of the consecutive trial}$   $y_i = \text{the data}$ 

A combination of two techniques was used to perform the curve fitting.

Both were based on minimizing the least-square error given by

$$RMS = [(f(T_i) - y_i)^2]^{1/2}$$
 (6-2)

The first technique used produced a least-squares approximation in closed form. The second technique produced an exact least-squares fit in an iterative manner (22). This second technique required a first (non-zero) estimate of the parameters. The first approximate technique was used to produce these estimates. As with many iterative numerical techniques, convergence of the result is not guaranteed. This occurred during several of the sixty curve fits that were performed. When this occurred, the parameters produced by the approximate technique were used.

Such instances are indicated in the results. Several sample plots of data and the curves fit to this data appear in the Appendix.

The analyses that were performed with experiment I data included three comparisons of displays with different prediction lengths (L) for each initial condition:

- 1. L = 0. and L = 20.
- 2. L = 0. and L = 40.
- 3. L = 20. and L = 40.

For each of these analyses, a curve was fit to the combined data for both prediction lengths and then subtracted from the data. If the data for each prediction length was fitted and subtracted separately, the differences in the various displays would not have been preserved and the results of the analysis of variance would have been erroneous. Curves were fit to the data for each prediction length individually to use in studying the learning process, but these curves were not used with the analysis of variance.

Only two prediction lengths were used for experiment II. Thus, only one analysis was done for each initial condition. As with experiment I, the learning curves that were subtracted were those fit to the combined data for both prediction lengths.

Learning curves were fit to all of the components of the data except A/C position error and error rate. The scale upon which this data was taken prevented any such fitting. These two components could have values from -100. to 100., but the negative signs were only used to indicate direction and the performance indexes used the absolute value of the data. Error scores were reasonably normally distributed about the

origin (0.0) if the signs were retained and therefore the actual data (with signs) were used for the analysis of variance. Because of the dual roles of this error data, it was not appropriate to fit learning curves to this data. Fortunately, as previously mentioned, the error data could be assumed to be normally distributed about the origin.

Two computer programs were written to perform the above analyses. These were based on the references cited with the above discussion. The first program, LCURV, performed the least-squares fitting of the data. The second program, ANVAR, performed the analysis of variance. Listings of these programs appear in the Appendix. A complete listing of all experimental data also appears in the Appendix.

The results for the two experiments appear in Tables II - VIII.

Conclusions will be drawn from these results in the following chapter.

| Initial<br>Conditi <b>o</b> n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | Al           | A <sub>2</sub> | <sup>A</sup> 3            | RMS           | MEAN              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|----------------|---------------------------|---------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0             | 132.96       | 35•57          | 436                       | 2.28          | 137.02            |
| storing and the state of the st | 20*           | -37.75       | 177.48         | <b>~</b> <sub>•</sub> 005 | 3 <b>.5</b> 5 | 133.50            |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>]</u>  O++ | 11.09        | <b>135.</b> 39 | OII                       | 3.75          | 136.81            |
| SPRETATIONS Experiments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,20          | 130.96       | 24.82          | 306                       | 2.08          | 600 KLP 4009      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,40%         | 24.65        | 121.74         | <b></b> 011               | 3 <b>.3</b> 5 | en-estado         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40% بالو      | <b>~9.30</b> | 152.64         | 007                       | 3.19          | 40440             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O*+           | -53.87       | 217.50         | 006                       | 5.46          | 153.38            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20*           | 16.17        | Tho.46         | 009                       | 2.55          | 147.95            |
| 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40            | 143.22       | 36.65          | 196                       | 2.59          | 153.32            |
| Na reconstruction of the second season                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20 و 0        | 139.24       | 26.38          | 114                       | 3.00          | ,<br><del> </del> |
| Berl DOCHES STANKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,40%         | -24.20       | 189-31         | 009                       | 4.37          | AMP CAST CASTS    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20,40         | 141.03       | 29.55          | <b></b> 164               | 1.95          | 4000ccs-460).     |

\*Approximate Fit

EXPERIMENT I

LEARNING PARAMETERS A<sub>1</sub>, A<sub>2</sub>, AND A<sub>3</sub>, RIS FITTING ERROR, AND MEAN OF PERFORMANCE INDEX (PI)

(DATA FOR 16 TRIALS X 5 SUBJECTS PER INITIAL CONDITION)

| Initial<br>Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L                   | Å              | <sup>A</sup> 2 | A3                     | RMS  | mean            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|----------------|------------------------|------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                   | 126.10         | 19.71          | <b>~.</b> 3 <i>5</i> 3 | 1.45 | 129.00          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20*                 | -26.03         | 157.40         | 003                    | 2.55 | 128.10          |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>4</b> 0 <b>*</b> | 34.48          | 101.35         | 008                    | 2.70 | 130 <b>.0</b> 6 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,20*               | 14.34          | 118.63         | <b></b> 0 <b>0</b> 5   | 2.31 | -<br>           |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0بلو0               | 126.57         | 20.49          | <b>•3</b> 59           | •94  | end and tolk    |
| CONTRACTOR AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20,40               | 126.46         | 16.19          | 326                    | 1.21 | 940 mai 485     |
| Parkinsan kanadaan oran abustus fini fini kulturi di kuni atalah salah atah melakatan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O <del>*</del>      | -2.43          | 155.46         | 007                    | 3.72 | 145.60          |
| одинительного применения в прим | 20                  | <b>125.</b> 05 | 26.79          | 040                    | 1.62 | 144.51          |
| 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>L</u> O          | 143.57         | 311.94         | -•30I                  | 2.16 | 149.21          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,20                | 134.94         | 19.82          | 089                    | 2.15 | mil waken       |
| THE STATE OF THE S | O,40 <del>*</del>   | 10.54          | 145.53         | 008                    | 3.45 | tus rolleys     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 بلو0             | 141.32         | 21.99          | 215                    | 1.57 | tribus (PP      |

\*Approximate Fit

EXPERIMENT I

LEARNING PARAMETERS A<sub>1</sub>, A<sub>2</sub>, AND A<sub>3</sub>, RMS FITTING ERROR, AND MEAN OF TASK COMPLETION TIME (t)

(DATA FOR 16 TRIALS X 5 SUBJECTS PER INITIAL CONDITION)

TABLE III

| Condition                                    | Comparison   | Ž                | *           | *             | PI                      |
|----------------------------------------------|--------------|------------------|-------------|---------------|-------------------------|
|                                              | Betw. Subj.  | .lıl             | <b>•</b> 30 | d<br>1.91     | 4.32                    |
| 45 <b>:0,2</b> 0                             | Betwo Displo | -87              | •35         | 1.00          | ъ<br>5•46               |
| STATE THE TOTAL CONTINUE WAS TO FAIR AND THE | Interaction  | <b>.</b> 63      | <b>.1</b> 0 | .14           | <b>.</b> 36             |
|                                              | Betw. Subj.  | •36              | •12         | d<br>1.33     | d<br>1.55               |
| 45 <b>:</b> 0,40                             | Betw. Displ. | 1,91             | •02         | •65           | •02                     |
|                                              | Interaction  | 1.20             | •33         | <u>.87</u>    | <u>ુના</u>              |
|                                              | Betwo Subjo  | <b>d</b><br>1,50 | •05         | d<br>1.68     | 2.05                    |
| 45:20,40                                     | Betwo Displo | <b>₀</b> 86      | •29         | 2.75          | 3 <sub>•</sub> 89       |
|                                              | Interaction  | •40              | -89         | •75           | <b>.</b> 57             |
|                                              | Betw. Subj.  | <b>•</b> 50      | d<br>1.57   | 3 <b>.</b> 40 | ь<br>6 <b>.</b> 47<br>b |
| 90:0,20                                      | Betw. Displ. | •13              | 1.00        | •52           | 8 <b>,22</b>            |
|                                              | Interaction  | <b>.</b> 46      | <b>.</b> 32 | 1.04          | 1.46                    |
|                                              | Betwo Subjo  | d<br>1.33        | <b>.</b> 86 | d<br>2,79     | 3.97                    |
| 0بلو0:09                                     | Betw. Displ. | •07              | •38<br>đ    | 2.79          | •01<br>d                |
|                                              | Interaction  | 80 <sub>•</sub>  | 1.33        | 2,11          | 1.81                    |
|                                              | Betw. Subj.  | 1.00             | 1.17        | 3.54<br>b     | 3.54<br>b               |
| 90:20,40                                     | Betw. Displ. | •00              | •39         | 5•73          | 5 <b>•</b> 77           |
|                                              | Interaction  | •50              | 1.67        | 1.11          | •94                     |

a = 99%, b = 95%, e = 90%, d = 70%

EXPERIMENT I

# ANALYSIS OF VARIANCE RESULTS

(DATA FOR 16 TRIALS X 5 SUBJECTS PER INITIAL CONDITION)

TABLE IV

| Initial<br>Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L      | <sup>A</sup> 1  | A <sub>2</sub> | A <sub>3</sub>   | RMS    | ! Ean                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|----------------|------------------|--------|--------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0      | 248 <b>-1</b> 8 | 285.66         | 362              | 20.57  | 280.86                   |
| 90,-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20     | 231.91          | 191.38         | 240              | 1.7.13 | 266.91                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,20   | 240.27          | 233.13         | 297              | 17.76  |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0      | 209.67          | 148.78         | 145              | 20.66  | 254.75                   |
| 45,-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20     | 215.88          | 129.84         | <del>-</del> 258 | 8•68   | 237.81                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,20   | 214.02          | 135•12         | 186              | 12.29  | wa 100 data <sub>.</sub> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0      | <b>242.</b> 89  | 113.35         | 129              | 10.4I  | 281.01                   |
| 20,-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20     | 242.52          | 113.87         | 159              | 13.01  | 274 <b>.2</b> 5          |
| And the second s | 20 و 0 | 24 <b>2.3</b> 9 | 113.17         | 1/1              | 9•20   | dermit (SPS) destiff)    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0      | 227.92          | 159.13         | 219              | 8-43   | 259•98                   |
| 45,-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20     | 219,66          | 129.28         | 189              | 10-24  | 250.05                   |
| ACCOUNTS OF THE PROPERTY OF TH | 20 و ٥ | 224.07          | 144.15         | 206              | 7.09   | údá 1750 dája            |

EXPERIMENT II

LEARNING PARAMETERS A1, A2, AND A3, RMS FITTING ERROR, AND MEAN OF PERFORMANCE INDEX (PI)

(DATA FOR 20 TRIALS X 3 SUBJECTS PER INITIAL CONDITION)

TABLE V

| Initial<br>Condition | L    | A <sub>1</sub> | <sup>A</sup> 2 | A <sub>3</sub> | RMS            | MEAN                   |
|----------------------|------|----------------|----------------|----------------|----------------|------------------------|
| de California        | 0    | 14,614         | 751.97         | -1.463         | 16.19          | 25.96                  |
| 90,-90               | 20   | 10.36          | 375.10         | <b>-1.</b> 330 | 9.12           | 17.11                  |
|                      | 20و0 | 12.49          | 557.45         | -1.406         | 12.03          | . අත සහ අත             |
| 45,-90               | 0    | 2.09           | 91.47          | <b></b> 239    | 1 <b>3.3</b> 9 | 18.86                  |
|                      | 20   | 2.31           | 30.58          | <b>∞</b> •222  | 4.70           | 8,38                   |
|                      | 0,20 | 2,22           | 61.03          | -235           | 7.31           | රහා වනුදු වෙනු-        |
|                      | O`   | -5.19          | 42.28          | <b>~</b> •060  | 7.45           | 18.75                  |
| 90,-45               | 20   | 9-47           | 62,30          | 279            | 8,80           | 19.13                  |
|                      | 0,20 | 7.60           | لباء بلبا      | 174            | 7.06           | ace eath fing          |
|                      | O    | 5.10           | 92.45          | 401            | 6.97           | 14.48                  |
| 45,-45               | 20   | -7-73          | 49.03          | <b>~</b> •099  | 4.69           | 12.50                  |
|                      | 0,20 | 1.15           | 59.01          | 212            | 5.16           | नंतरंत प्रोतिक शिक्षकु |

EXPERIMENT II

LEARNING PARAMETERS A<sub>1</sub>, A<sub>2</sub>, AND A<sub>3</sub>, RMS FITTING ERROR, AND MEAN OF SEPARATION ERROR (INTEGRAL)

(DATA FOR 20 TRIALS X 3 SUBJECTS PER INITIAL CONDITION)

TABLE VI

| Initial<br>Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L    | <sup>A</sup> 1 | A <sub>2</sub> | <sup>A</sup> 3 | RMS   | MEAN                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|----------------|----------------|-------|-----------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0    | 218.78         | 62.36          | 143            | 8.52  | 237.93                                  |
| 90,-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20   | 222.63         | 7 <b>6.</b> 69 | 248            | 5.52  | 236.15                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,20 | 221.43         | 67.71          | 193            | 5.93  | *************************************** |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0    | 209.18         | 50.82          | 182            | 9.16  | 221.56                                  |
| 45,-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20   | 206.70         | 70.89          | 261            | 10.28 | 218.50                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,20 | 208.40         | 59.93          | 221            | 8.23  | pair filir das                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0    | 231.03         | 64.94          | 193            | 10.90 | 245.93                                  |
| 90,-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20   | 232.81         | 56.49          | 247            | 7.92  | 242.81                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,20 | 231.70         | 59.89          | 209            | 6.66  | us                                      |
| The state of the s | 0    | 215.97         | 75.39          | 251            | 8.00  | 229.11                                  |
| 45,-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20   | 217.11         | 67.71          | 293            | 10.09 | 227.01                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,20 | 216.49         | 71.09          | 267            | 7.09  | was Mills disks                         |

EXPERIMENT II

LEARNING PARAMETERS  $A_1$ ,  $A_2$ , AND  $A_3$ , RMS FITTING ERROR, AND MEAN OF TASK COMPLETION TIME (t) (DATA FOR 20 TRIALS X 3 SUBJECTS PER INITIAL CONDITION)

| Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Comparison   | х <sub>2</sub>    | * <sub>2</sub>    | x <sub>3</sub>    | ×3                 | t                 | Sat               | PI                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|---------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BETW. SUBJ.  | .72               | 1.83 <sup>d</sup> | 1.25 <sup>d</sup> | 21.25 <sup>a</sup> | . 19              | 1.31 <sup>d</sup> | 3.48 <sup>b</sup>         |
| 90,-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BETW. DISPL. | . 88              | .11               | .03               | . 15               | . 13              | . 89              | 1.52 <sup>đ</sup>         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INTERACTION  | . 39              | .43               | .03               | .07                | . 30              | . 29              | .01                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BETW. SUBJ.  | 1.35 <sup>d</sup> | 4.67 <sup>b</sup> | 1.56 <sup>d</sup> | 3.96 <sup>b</sup>  | 1.41 <sup>d</sup> | 1.23              | 1.9 <b>3</b> <sup>d</sup> |
| 45,-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BETW. DISPL. | <b>. 7</b> 9      | .00               | . 45              |                    | . 29              | 2.17 <sup>d</sup> | 3.99 <sup>b</sup>         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INTERACTION  | 1.00              | .27               | .13               | . 40               | .48               | 1.84 <sup>d</sup> | .22                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BETW. SUBJ.  | 1.85 <sup>d</sup> | 7.41ª             | . 37              | 4.71 b             | .09               | 8.15 <sup>d</sup> | 2.15 <sup>d</sup>         |
| 90,-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BETW. DISPL. | . 10              | ۰00               | .11               | .67                | <sub>*</sub> 23   | .01               | 1.01                      |
| CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | INTERACTION  | .43               | . 23              | .90               | . 83               | 2.59 <sup>C</sup> | 1.38 <sup>d</sup> | .05                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BETW. SUBJ.  | 3.76 <sup>b</sup> | 7.20 <sup>d</sup> | 4.40 <sup>d</sup> | 1.59               | 1.94              | .99               | .13                       |
| 45,-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BETW. DISPL. | . 10              | .22               | .27               | .96                | .08               | .17               | 1.02                      |
| No. of the state o | INTERACTION  | .32               | 1.26 <sup>d</sup> | 1.83 <sup>d</sup> | 5.50ª              | 3.06 <sup>c</sup> | . 44              | .64                       |

a = 99%, b = 95%, c = 90%, d = 70%

EXPERIMENT II

# ANALYSIS OF VARIANCE RESULTS (DATA FOR 20 TRIALS X 3 SUBJECTS PER INITIAL CONDITION)

TABLE VIII

### VII. DISCUSSION AND CONCLUSIONS

The conclusions that can be drawn from the previous analyses will be presented in several sections. A concise statement of these conclusions appeared in Chapter I.

### A. Learning

The learning process for the ATC tasks was modeled with a three parameter exponential curve given by equation 6-1. The parameters are  $A_1$  the asymptote,  $A_2$  the initial condition, and  $A_3$  the rate.

During the experiments, each subject performed with all of the various displays. Thus, it is difficult to separate the learning achieved with the predictor display from that achieved with the conventional display. For this reason, any differences between the learning processes with and without the predictor display may not appear as great as they actually are.

By comparing the parameters  $A_3$  and  $A = A_1 + A_2$ , the differences between the processes with the various displays can be studied. The most important characteristic of the learning curves can be seen by noting that two curves with large A and  $A_3$  and low A and  $A_3$  respectively will approach each other as T increases. Whether or not they ever meet depends on the magnitudes of A and  $A_3$ . However, regardless of the magnitudes of these parameters, curves of this type will exhibit less and less difference as T increases.

For the most part, these are the types of curves that are found in the tables of Chapter VI. A and  $A_3$  for the predictor display are smaller than the comparable parameters for the conventional

display. Consequently, the predictor usually yields a lower mean score, but the usefulness of the predictor decreases as the subject's intuitive feeling for the A/C dynamics increase. The possibility of the predictor becoming completely useless once the learning process is complete will vary with the difficulty of the task and for many instances the learning curves will never converge.

The above conclusions agree with those found by Bernotat for a somewhat different task (5). He also found that using the same subjects on both displays will not show as wide a difference in learning curves as would be shown by segregating the subjects into separate groups for each display.

In most cases, it appears that the learning process with the predictor display is faster than that with the conventional system and that the difference in performance with and without the predictor display decreases as learning proceeds.

# B. Analysis of variance

In this section, conclusions will be drawn from Tables IV and VII.

of experiment I. The performance index for experiment I is given by equation 4-1. Reference to this equation shows that PI is affected by X, X, t, and a composite X - X term. Any significant differences that are found between the PI of different displays was necessarily caused by some combination of the above four terms.

Considering the L=0 and L=20 comparison, the analysis indicates that there is a significant difference between the scores

(PI) obtained with each display. Referring to Table IV, it is seen that the difference must be attributable to the  $X-\dot{X}$  term.

The comparison between L=0. and L=40. indicates no significant difference between scores. Two of the score components indicate a 70% significant difference, but since the final scores indicate no differences, these results are considered meaningless.

The L = 20. and L = 40. comparison shows that the reason the 40. does not improve performance while the 20. does is that task completion times with 40. are significantly higher. Looking at the means of Table III substantiates this. The conclusion is that the 40. second prediction extrapolates the A/C movement much farther into time than the subject needs. As the subject attempts to use this extra information, he wastes time in making corrections that do not affect his error score. Thus, he compensates for errors that would never be realized if he ignored them.

Table VIII presents the results of the analysis of variance of experiment II. There is only one initial condition that shows a significant difference between displays. The score component causing this difference was the separation error. Some of the composite X - X terms of 4-3 may also have had an effect.

In general, the predictor display helps to reduce errors, but does not reduce task completion time which has a lower limit dictated by the dynamics of the system. A predictor which displays more than the necessary amount of information can increase task completion time.

Before discussing the results of all of the analyses for

both experiments, a brief discussion of some particular aspects of the experiments will be presented.

## C. Strategies

The strategy that subjects used for experiment I was straightforward. They simply tried to guide the single A/C to the gate as quickly as possible. The trade-off between error and time was consistent among the subjects. However, the strategies that were used during experiment II were varied and changed during the course of the experiment.

The task for experiment II was basically one of guiding three A/C in a specified order to the gate. The subjects were faced with with the problem of delaying  $A/C_3$  in some manner so as to bring  $A/C_2$  across the funnel first and avoid separation errors between  $A/C_2$  and  $A/C_3$ . Figure 18 illustrates some possible strategies.

The subjects used all of these strategies except A. This strategy illustrates why the  $|X| \leq 20$  criteria was added to equation 4-3. To avoid separation error and have low task completion times, strategy A might be plausible. Bringing  $A/C_2$  and  $A/C_3$  along the opposite sides of the screen keeps them well away from the separation standard of 3 miles and also low task completion times can be obtained if they both cross the top of the screen in the same small time interval. However, large errors of the order of 3 miles result which would be entirely unacceptable in an actual ATC situation. Thus, to keep the PI realistic the extra criterion was added for experiment II.



EXPERIMENT II STRATEGIES

FIGURE 18.

Strategies B and C allow the A/C to cross the gate having accumulated zero separation error, but the task completion time is high for B and the error rates are high for C. All of the subjects eventually settled on using D. Those who found this strategy first obtained the lowest overall score for the experiment.

To use strategy D, the subject had to allow  $A/C_3$  to leave the screen. When this happened, the prediction was lost and the subject had to learn through intuition where the A/C would reappear.

The perfection of the strategies used for experiments I and II was influenced by the presence of a grid on the CRT. Subjects used the cartesian coordinate system on the display (it was not numbered or lettered) to remember where to give commands. This closely resembles the use of switch curves in an optimal control task. Miller <sup>(9)</sup> has investigated this and found human subjects to be capable of reproducing optimal solutions once they are learned.

The subjects during this experiment made various errors in attempting to find a good strategy for guiding the A/C. These errors were strictly of an unintentional nature. Once they had settled on strategy D, they began to try and find a lower limit. Errors resulted from this testing process, but they were of a more intentional nature. They would not have occurred if the subjects were aware of the actual optimal solution.

## D. Subjects' comments

Although the comments of subjects are only qualitative, they can be used as substantiating evidence.

When the experiments first began, the subjects were fairly

impressed with the predictor system and felt that it made a great difference. Study of the earlier portions of the learning curves shows that the difference between the predictor and conventional displays was greatest then. As the experiments progressed, the subjects gained more confidence in their intuitive abilities and their praise of the predictor decreased. By the end of the experiments the subjects felt that the guiding process was easier with the predictor but they weren't sure that it made any difference in their performance.

Their overall final opinion was that the predictor helped them to learn the dynamics of the process. Once the process is learned, the predictor is good as a check during the execution of commands but isn't necessary. In most cases, the subjects' opinions agree with the results of the data analysis. However, some of the conclusions reached here were not mentioned by the subjects.

Considering task complexity, the subjects often commented that they had difficulty keeping track of all of the A/C during the more complex tasks, The frequency of these comments decreased as the experiment proceded, but occasional gross errors on the part of the subjects indicated that the problem of feeling overloaded never completely disappeared.

# E. A conjecture

Two tasks were performed during experiment I and four tasks were performed during experiment II. Ranking these tasks according to the mean score obtained, it is noted that for the three tasks with the lowest mean scores the predictor display yielded significantly better performance while for the three tasks with

highest mean scores the predictor did not significantly improve performance.

Order of difficulty can be related to mean score. Tasks which yielded higher scores were those during which the subjects accumulated high error and integral scores. The subjects found the more difficult tasks very taxing. This is evidenced by their comments as well as the numerical results.

The above allows the conclusion that when the subject was highly taxed, his responses were reduced to a very intuitive level. Although the predictor aid was available, the subject apparently lid not use the information that was presented. On the easier tasks which he did not find troublesome, he was able to use the information from the prediction. This conclusion is evidenced by the results of the analyses.

It appears that there is an upper and lower limit on the complexity of tasks that can be benifited by computer aids such as predictor displays. These limits might be quantified in terms of information transmitted. Tasks with very low information content do not need computer aids. Tasks with high information content tax a subject to the point that he will respond on an intuitive level regardless of the presence of an aid.

This particular conclusion is presented in the form of a conjecture because of the lack of supporting evidence available.

Many different tasks would have to be investigated before this conjecture could be verified.

#### F. Air traffic control

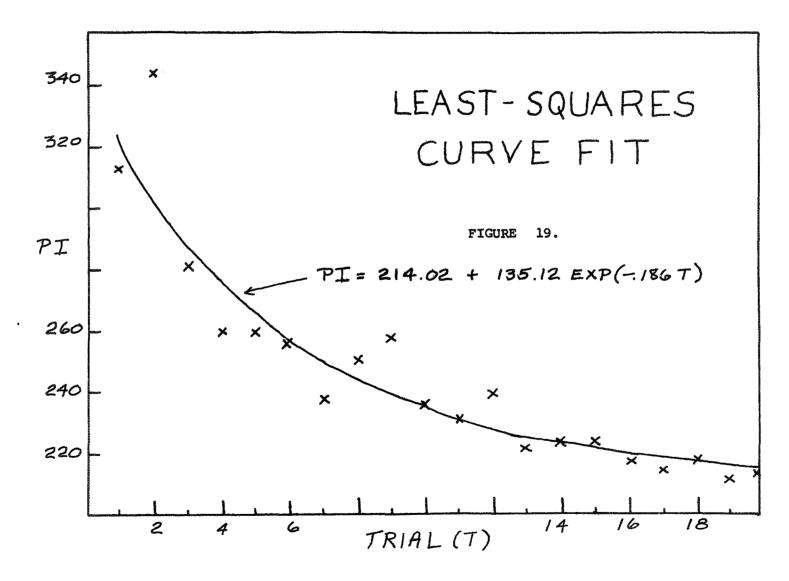
The results of this research indicate that the applicability of the predictor display system presented in this thesis depends on the nature of the ATC tasks. Tasks similar to those of experiment I and the easier of experiment II would benefit from a predictor display. Tasks similar to the harder tasks of experiment II would not benefit.

The predictor concept might be made generally applicable if a digital computer was included in the system. Some decision making responsibility could be delegated to the digital computer. A hybrid system of this type could be used to govern the complexity of the tasks that the operator performs. If a task became difficult the computer would take some of the responsibility. In this way the upper limit on task complexity would never be exceeded and the operator's aids would remain useful to him. A man-computer combination of this type would keep the man and his flexibility as a vital link in the system but would allow the system to handle tasks of much more complexity than the man could handle himself.

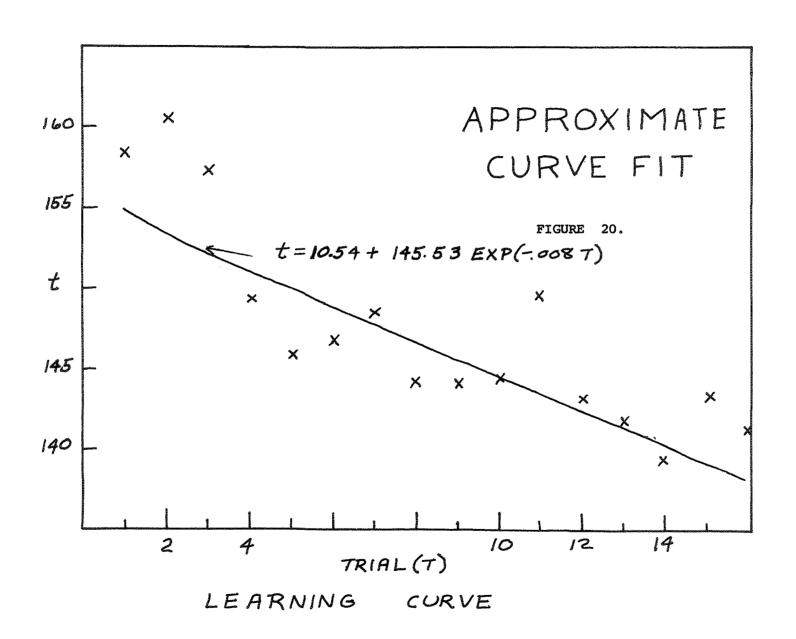
#### REFERENCES

- 1. Zeibolz, H. and H.M. Paynter, "Possibilities for a Two-Time Scale Computing System for Control and Simulation of Dynamic Systems," Proc. Nat'l Electronic Conference, Vol. 9, 1954, pp. 215-223.
- 2. Kelley, C.R., <u>Developing and Testing the Effectiveness of the Predictor Instrument</u>, Office of Naval Research Tech.

  Rept. 252-60-1, Dunlap and Associates, Inc., Stamford, Conn., 1960.
- 3. Kelley, C.R., M.B. Mitchell and P.H. Strudwick, Applications of the Predictor Displays to the Control of Space Vehicles, NASA Tech. Rept., Dunlap and Associates, Inc., Stamford, Conn., 1964.
- 4. Sheridan, T.B., "The Human Operator in Control and Instrumentation," Progress in Control Engineering-1, Heywood & Co., London, 1962, pp. 143-187.
- 5. Bernotat, R., <u>Prediction Display</u>, a Way of Easing Man's Job in <u>Integrating Control System</u>, Institute for Guidance, Control and Air Transportation of the Technical University of Berlin.
- 6. McCoy, W.K. and G.G. Frost, <u>A Predictor Display for Orbital</u>
  Rendezvous, AMRL Memorandum P-79, Wright-Patterson
  Air Force Base, Ohio, 1964.
- 7. Sheridan, T.B., "Three Models of Preview Control," <u>I.E.E.E. Transactions</u> on Human Factors in Electronics, Vol. HFE-7, No.2, June, 1966.
- 8. Miller, R.A., A Preview Control Model With One or Two Fast Time
  Scale Loops, MIT Engineering Projects Lab Tech. Rept.
  70283-4, August, 1967.
- 9. Miller, D.C., Behavioral Sources of Suboptimal Human Performance in Discrete Control Tasks, MIT Engineering Projects Lab Tech. Rept. 70283-9, January, 1969.
- 10. Rouse, W.B., An Appraisal of Problems in the Air Traffic Control


  System, MIT Engineering Projects Lab Tech. Rept. 70283-12,

  March, 1970.
- 11. Simpson, R.W., An Analytical Investigation of Air Traffic Operations in the Terminal Area. Ph.D. Thesis, MIT, 1964.
- 12. Porter, L.W., On Optimal Scheduling and Holding Strategies for the Air Traffic Control Problem, MIT Electronic Systems Lab Tech. Pept. ESL-R-491, September, 1969.
- 13. Anon, "The Tangled Mess in Aviation," Business Week, August 9, 1969.


- 14. Odoni, A.R., An Analytical Investigation of Air Traffic in the Vicinity of Terminal Areas, Ph.D. Thesis, MIT, 1969.
- 15. Taylor, F.W.R., ed., Jane's All The World's Aircraft, 1969-1970, p.275.
- 16. Fischel, J. et.al., Flight Studies Pertinent to Low-Speed Operation of Jet Transports, NASA Memorandum 3-1-59H, 1959, p.21.
- 17. Philbrick/Nexus, Applications Manual for Operational Amplifiers, Philbrick/Nexus Research, 1968.
- 18. Dixon, W.J. and F.J. Massey, <u>Introduction to Statistical Analysis</u>, McGraw-Hill, 1951, pps. 119-148.
- 19. Chapanis, A., Research Techniques in Human Engineering, The Johns Hopkins Press, Baltimore, 1959, pps. 96-147.
- 20. Hildebrand, F.B., <u>Introduction to Numerical Analysis</u>, McGraw-Hill, 1956, p.378.
- 21. Hald, A., Statistical Tables and Formulas, Wiley, N.Y., 1952.
- 22. Scarborough, J.B. Empirical Formulas, 2nd. Edition, The Johns Hopkins Press, N.Y., 1950.

## APPENDIX A. SAMPLE LEARNING CURVES

The fitting of three parameter exponential learning curves to the data was discussed in Chapter VI. Although many curves were produced (60), only two example curves will be presented. These will represent a least-squares fit and an approximate fit respectively. The computer program used to generate all of the learning curves appears in Appendix B.



LEARNING CURVE



# APPENDIX B. COMPUTER PROGRAMS

The following two computer programs were used to perform the analysis described in Chapter VI. The first program, LCURV, performed the exponential curve fitting. The second program, ANVAR, performed the analysis of variance.

```
C
      LCURV
      LEAST-SQUARES FITTING OF AN EXPONENTIAL
\mathbf{C}
      LEARNING CURVE TO DATA
\overline{C}
      DIMENSION ITRL(2,5,20), IX2(2,5,20), IX2D(2,5,20),
     1IX3(2,5,20),IX3D(2,5,20),ITI(2,5,20),
     1II(2,5,20), IPI(2,5,20), IX(2,5,20), FXA(20),
     1A(3,20)
      DATA MUST BE IN INTEGER FORM
C
      N1 TREATMENTS - MAX 2
\mathsf{C}
      N2 SUBJECTS - MAX 5
\overline{C}
      N3 TRIALS - MAX 20
C
      N4 DATA COMPONENTS - MAX 10
       X1 = 2
      N2=5
       N3=16
       V4=4
       TURVI ATAC
\mathbf{C}
       THIS SECTION WILL CHANGE WITH THE TYPE OF DATA
       DO 20 I=1.N1
       20 J=1,N2
       DO 20 K=19N3
       READ(2,10)ITRL(I,J,K),IX2(I,J,K),IX2D(I,J,K),
      1IX3(I,J,K),IX3D(I,J,K),ITI(I,J,K),II(I,J,K),
      IIPI(I,J,K)
   10 FORVAT(819)
   20 CONTINUE
       SELECTION OF PERFORMANCE COMPONENT TO BE ANALYZED
       WILL CHANGE WITH THE NUMBER OF DATA ITEMS
\mathsf{C}
       IC=3
   30 IC=IC+1
       00 60 I=1.A1
       DO 60 J=1, N2
       DO 58 K=1,N3
       GO TO (40,42,44,46,48,50,52), IC
   40 IX(I,J,K) = IX2(I,J,K)
       GO TO 58
   42 IX(I_9J_9K)=IX2D(I_9J_9K)
       GO TO 58
   44 IX(I)J,K)=IX3(I)J,K)
       GO TO 58
    46 IX(I,J,K)=IX3D(I,J,K)
       GO TO 58
    48 IX(I,J,K)=ITI(I,J,K)
       GO TO 58
    50 IX(I,J,K)=II(I,J,K)
       GO TO 58
    52 IX(I)JOK)=IPI(I)JOK)
    58 CONTINUE
    60 CONTINUE
```

```
AVERAGES
C
      NS1=1
      NS2=1
   90 DO 300 K=1.N3
      IXA(K)=0
      DO 200 I=NS1.NS2
      00 100 J=1.N2
  100 IXA(K)=IXA(K)+IABS(IX(I*J*K))
  200 CONTINUE
      NP=NS2-NS1+1
      DD=FLOAT(IXA(K))
      DN=FLOAT (NP*N2)
      FXA(K)=DD/DN
  300 CONTINUE
C
      CURVE FITTING
      FIRST APPROXIMATIONS
C
      N=N3
      13P=13-1
C
      ALPHA
      SUMA=0.
      SUMB=0.
      DO 320 I=1.N3P
  320 SUMA=SUMA+FXA(I)*FXA(I+1)
      DO 330 I=1.N3P
  330 SUMB=SUMB+FXA(I)**2
      AAPHA=SUMA/SUMB
      ALPHA=ABS(AAPHA)
      A3=ALOG(ALPHA)
C
      LINEAR PORTION
      T1=0.
      T2=0.
      T3=0.
      T4=0.
      DO 340 I=1.N3
      ADD=ALPHA**(I-1)
      T1=T1+ADD
       T2=T2+ADD**2
      T3=T3+FXA(I)
  340 T4=T4+ADD*FXA(I)
      DEN= 1*T2-(T1**2)
       A1=(T2*T3-T1*T4)/DEN
       A2=(%*T4-T1*T3)/DEN
```

```
ITERATIVE FIT
C
  345 V1=0.
      V2=0.
      V3=0.
      V4=0.
      V5=0.
      V6=0.
      V7=0.
      V8=0.
      DO 350 I=1.N
      TA1=EXP(A3*I)
      TA2=A2*I*EXP(A3*I)
      TA3 = -A1 - A2 \times EXP(A3 \times I) + FXA(I)
      V1=V1+TA1
      V2=V2+TA2
      V3=V3+TA1**2
      V4=V4+TA1*TA2
      V5=V5+TA2**2
      V6=V6+TA3
      V7=V7+TA1*TA3
  350 V8=V8+TA2*TA3
      W1=V3*V5-V4**2
      W2=V2*V4-V1*V5
      W3=V1*V4-V2*V3
      W4=N*V5-V2**2
      W5=V1*V2=N*V4
      116=N*V3-V1**2
       DEN=N*W1+V1*W2+V2*W3
       Z=(W1*V6+W2*V7+W3*V8)/DEN
      B=(W2*V6+W4*V7+W5*V8)/DEN
       C=(W3*V5+W5*V7+W6*V8)/DEN
       01=2**2+9**2+C**2
       D2=A1**2+A2**2+A3**2
       D=D1/(D1+D2)
       A1=A1+Z
       A2=A2+8
       A3=A3+C
       IF().LT.1.E-8) GO TO 360
                14,2=PAPER 1=SCOPE
                                        15,1=STOP ITERATING
       DATSW
       CALL DATSW(15,J)
       GO TO (360,345),J
   360 CONTINUE
```

```
C
      ERROR
      ESUM=0.
      DO 600 K=1.N
      D=A1+A2*EXP(A3*K)
      E=D-FXA(K)
  600 ESUM=ESUM+E**2
      RMS=SQRT(ESUM/FLOAT(N3))
C
      PRINTOUT
      WRITE(3,700)IC, NS1, A2, A3, A1, RMS
  700 FORMAT(1X, COMPONENT', 12, 2X, TREATMENT', 12, 2X,
     1'HEIGHT',FlC.2,2X, 'RATE',FlO.6,2X, 'ASYMP',FlO.2,
     12X . 'RMS ERROR' . F10.2)
C
      PLOTTING
      I = 1
      DO 710 J=1.N3
  710 A(I,J)=FXA(J)
      I=2
      DO 720 J=1.N3
  720 A(I,J) = A1 + A2 \times EXP(A3 \times J)
      I=3
      DO 730 J=1.N3
  730 A(I,J)=J
      IA=3
      XLAB=0.
      XSCL=0.
      NVARS=3
      NPTS=N3
      NX = 3
      MOVE=1
      LASEL=1
      ISCL=1
      FTIME=0.
      CALL DATSW(14.J)
      L00K=J-2
      CALL PICTR(A, IA, XLAB, XSCL, NVARS, NPTS, NX, MOVE, LABEL,
      11SCL, FTIME, LOOK)
       IF(NS1.GT.1) GO TO 800
      IF(NS2.EQ.2) GO TO 900
      NS1=2
      NS2=2
      GO TO 90
  800 NS1=1
      GO TO 90
  900 CONTINUE
       IF(IC.LT.N4) GO TO 30
```

END

```
C
      ANVAR
      TWO DIMENSIONAL ANALYSIS OF VARIANCE PROGRAM
      DIMENSION IX2(2,5,20), IX2D(2,5,20), IX3(2,5,20),
     1IX3D(2.5,20),ITI(2,5,20),II(2,5,20),IPI(2,5,20),
     1IX(2,5,20),IT(2,5),ITR(5),ITC(2),F(2),ITRL(2,5,20),
     1A1(1)),A2(10),A3(10)
C
      DATA MUST BE IN INTEGER FORM
C
      N1 TREATMENTS - MAX 2
C
      N2 SUBJECTS - MAX 5
C
      N3 TRIALS - MAX 20
\mathbf{C}
      N4 DATA COMPONENTS - MAX 10
      N1=2
      N2=3
      N3=20
      N4 = 7
C
      TURNI ATAC
\mathsf{C}
      THIS SECTION WILL CHANGE WITH THE TYPE OF DATA
C
      TO AVOID SUBTRACTING LEARNING FROM
\mathsf{C}
      A COMPONENT, USE A1=2000.
      READ(2.5)A1(1).A1(2).A1(3).A1(4).A1(5).A1(6).A1(7)
      READ(2.5)A2(1).A2(2).A2(3).A2(4).A2(5).A2(6).A2(7)
      READ(2,5)A3(1),A3(2),A3(3),A3(4),A3(5),A3(6),A3(7)
    5 FORMAT(7F10.5)
      DO 20 I=1,N1
      DO 20 J=1,N2
      DO 20 K=1,N3
      READ(2,10) ITRL(I,J,K), IX2(I,J,K), IX2D(I,J,K),
     1IX3(I, J, K), IX3D(I, J, K), ITI(I, J, K), II(I, J, K),
     11PI(I,J,K)
   10 FORMAT(819)
   20 CONTINUE
      SELECTION OF PERFORMANCE COMPONENT TO BE ANALYZED
      WILL CHANGE WITH THE NUMBER OF DATA ITEMS
      IC=0
   30 IC=IC+1
      DO 60 I=1,N1
      00.60 J=1.N2
      DO 58 K=1,N3
      GO TO (40,42,44,46,48,50,52), IC
   40 IX(I,J,K)=IX2(I,J,K)
      GO TO 58
   42 IX(I,J,K) = IX2D(I,J,K)
      GO TO 58
   44 IX(I,J,K)=IX3(I,J,K)
      GO TO 58
   46 IX(I,J,K)=IX3D(I,J,K)
      60 TO 58
   (Ae LeI) ITI = (Ae Le I) XI RA
```

```
GO TO 58
   50 IX(I,J,K)=II(I,J,K)
      GO TO 58
   52 IX(I,J,K) = IPI(I,J,K)
   58 CONTINUE
   60 CONTINUE
      GO TO 1950
   65 CONTINUE
C
      SUBTRACTING THE LEARNING CURVE
C
      SUBTRACTS A1 + A2EXP(-A3T) FROM DATA
C
      WHERE Al, A2, AND A3 ARE CONSTANTS
C
      SUPPLIED BY USER AND T IS THE
C
      CONSECUTIVE NUMBER OF THE TRIAL
      IF(A1(IC).GT.1000.) GO TO 90
      DC 80 I=1.N1
      DO 80 J=1.N2
      DO 70 K=1,N3
      A=FLOAT(N3)
      B=A1(IC)+A2(IC)*EXP(-A3(IC)*A)
   70 IX(I_9J_9K)=IX(I_9J_9K)-IFIX(B)
   80 CONTINUE
   90 CONTINUE
C
      SUBTOTALS
      DO 200 I=1.N1
      DO 100 J=1.N2
  100 \text{ IT}(I_*J) = 0
  200 CONTINUE
      DO 400 I=1.N1
      DO 400 J=1,N2
      DO 300 K=1.N3
  300 IT(I,J)=IT(I,J)+IX(I,J,K)
  400 CONTINUE .
\mathsf{C}
      ROW TOTALS
      DO 600 I=1.N2
  600 ITR(I)=0
      DO 800 J=1.N2
      DO 700 I=1.N1
  700 ITR(J)=ITR(J)+IT(I_0J)
  800 CONTINUE
\mathsf{C}
      COLUMN TOTALS
      DO 900 I=1,N1
  900 ITC(I)=0
      DO 1100 I=1.N1
      DO 1000 J=1,N2
 1000 ITC(I)=ITC(I)+IT(I,J)
 1100 CONTINUE
```

```
C
      TOTAL SUM OF SQUARES
      ITSUM=0
      FSQ=0.
      DO 1300 I=1,N1
      00 1300 J=1,N2
      DO 1200 K=1.N3
      ITSUM=ITSUM+IX(I,J,K)
 1200 FSQ=FSQ+(FLOAT(IX(I,J,K)))**2
 1300 CONTINUE
      T=((FLOAT(ITSUM))**2)/(FLOAT(N1*N2*N3))
      WRITE(3,1400)T
 1400 FORMAT(1X,F15.2)
      V1=FSQ-T
\mathsf{C}
      SUM OF SQUARES FOR ROWS
      V2=0.0
      DO 1500 I=1.N2
 1500 V2=V2+((FLOAT(ITR(I)))**2)/(FLOAT(N1*N3))
      V2=V2-T
      SUM OF SQUARES FOR COLUMNS
\mathsf{C}
      V3-40.0
      DC 1600 I=1,N1
 1600 V3=V3+((FLOAT(ITC(I)))**2)/(FLOAT(N2*N3))
      V3=V3-T
      SUM OF SQUARES FOR SUBTOTALS
\mathsf{C}
      V4=0.0
      DO 1800 I=1.N1
      DO 1700 J=1,N2
 1700 V4=V4+((FLOAT(IT(I,J)))**2)/(FLOAT(N3))
 1800 CONTINUE
      V4=V4-T
      PRINTOUT
      WRITE(3,1900)IC,V1,V2,V3,V4
 1900 FORMAT(1X, 'COMPONENT', 12, 2X, 'TOTAL', F15, 2, 2X,
     1'ROW',F15.2,2X,'COLUMN',F15.2,2X,'SUBTOTAL',F15.2)
      GO TO 2300
      CALC OF MEANS
 1950 CONTINUE
      DO 2200 I=1.N1
      IMS=0
      DO 2100 J=1.N2
      DO 2000 K=1.N3
 2000 IMS=IMS+IX(I,J,K)
 2100 CONTINUE
      F(I)=(FLOAT(IMS))/(FLOAT(N2*N3))
      WRITE(3,2150)I,F(I)
 2150 FORMAT(1x, MEAN, 12,5x,F10,2)
 2200 CONTINUE
      GO TO 65
 2300 IF(IC.LT.N4) GO TO 30
      END
```

## APPENDIX C. DATA

The following pages present the data collected during experiments I and II. For experiment I, initial conditions 1 and 2 refer to 45 and 90, respectively. For experiment II, initial conditions 1, 2, 3, and 4 refer to 90,-90; 45,-90; 90,-45; and, 45,-45, respectively.

| EXPERIMENT 1 TRIAL  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | INITIAL X 0 2 1 1 -2 -1 1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | COND 1<br>XDOT<br>-4<br>10<br>4<br>-12<br>6<br>-1<br>1<br>-2<br>-4<br>-3<br>1<br>-10<br>8<br>-9<br>5   | SUBJ 1 PRED<br>TIME<br>145<br>138<br>128<br>132<br>123<br>124<br>130<br>125<br>126<br>126<br>124<br>121<br>124<br>123<br>125<br>125 | LENGTH 0 PI 149 152 134 148 129 126 136 127 130 129 125 131 134 132 133 129 |
|------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| EXPERIMENT 1 TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  | INITIAL X 14 4 2 -1 7 2 -4 2 1 3 1 0 -2 0 1 -5                | COND 1<br>XDOT<br>6<br>-8<br>-2<br>2<br>-3<br>0<br>5<br>-8<br>1<br>0<br>-1<br>-1<br>4<br>1<br>4<br>-14 | SUBJ 2 PRED<br>TIME<br>134<br>152<br>140<br>140<br>133<br>123<br>130<br>124<br>127<br>132<br>126<br>128<br>123<br>125<br>127<br>126 | LENGTH 0 PI 158 162 143 142 141 125 137 132 130 135 128 129 128 126 133 149 |

| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14             | X<br>-4<br>2<br>-1<br>-5<br>0<br>0<br>0<br>0<br>0                             | XDOT 12 -6 -6 0 -12 4 -6 -6 -1 0 -10 0            | TIME<br>139<br>130<br>128<br>130<br>136<br>126<br>124<br>125<br>129<br>144<br>128<br>137<br>127 | PI<br>152<br>137<br>136<br>131<br>156<br>130<br>128<br>126<br>135<br>148<br>134<br>139<br>127        |
|----------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 15                                                 | 0                                                                             | 0                                                 | 128                                                                                             | 128                                                                                                  |
| 16                                                 | 0                                                                             | С                                                 | 129                                                                                             | 129                                                                                                  |
| EXPERIMENT                                         | 1 INITIAL                                                                     | COND 1                                            | SUBJ 4 PRED                                                                                     | LENGTH 0                                                                                             |
|                                                    | T T T T T T T T T T T T T T T T T T T                                         |                                                   | 3000 T 111ED                                                                                    |                                                                                                      |
| TRIAL                                              | X                                                                             | XDOT                                              | TIME                                                                                            | PI                                                                                                   |
| TRIAL<br>1                                         |                                                                               |                                                   |                                                                                                 |                                                                                                      |
| TRIAL<br>1<br>2                                    | X<br>12<br>0                                                                  | XDOT<br>4<br>-10                                  | TIME<br>137<br>129                                                                              | PI<br>156<br>139                                                                                     |
| TRIAL<br>1<br>2<br>3                               | X<br>12<br>0<br>7                                                             | XDOT<br>4<br>-10<br>0                             | TIME<br>137<br>129<br>135                                                                       | PI<br>156<br>139<br>142                                                                              |
| TRIAL<br>1<br>2<br>3<br>4                          | X<br>12<br>0<br>7<br>0                                                        | XDOT<br>4<br>-10<br>0<br>2                        | TIME<br>137<br>129<br>135<br>127                                                                | PI<br>156<br>139<br>142<br>129                                                                       |
| TRIAL<br>1<br>2<br>3<br>4<br>5                     | X<br>12<br>0<br>7<br>0<br><del>-</del> 4                                      | XDOT<br>4<br>-10<br>0<br>2<br>-12                 | TIME<br>137<br>129<br>135<br>127<br>131                                                         | PI<br>156<br>139<br>142<br>129<br>144                                                                |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6                | X<br>12<br>0<br>7<br>0<br><del>-</del> 4                                      | XDOT<br>4<br>-10<br>0<br>2<br>-12<br>1            | TIME<br>137<br>129<br>135<br>127<br>131<br>126                                                  | PI<br>156<br>139<br>142<br>129<br>144<br>127                                                         |
| TRIAL 1 2 3 4 5 6 7                                | X<br>12<br>0<br>7<br>0<br>-4<br>0<br>5                                        | XDOT<br>4<br>-10<br>0<br>2<br>-12<br>1<br>-1      | TIME<br>137<br>129<br>135<br>127<br>131<br>126<br>128                                           | PI<br>156<br>139<br>142<br>129<br>144<br>127<br>132                                                  |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | X<br>12<br>0<br>7<br>0<br>-4<br>0<br>5                                        | XDOT<br>4<br>-10<br>0<br>2<br>-12<br>1<br>-1<br>6 | TIME<br>137<br>129<br>135<br>127<br>131<br>126<br>128<br>129                                    | PI<br>156<br>139<br>142<br>129<br>144<br>127<br>132<br>135                                           |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | X<br>12<br>0<br>7<br>0<br>-4<br>0<br>5<br>0                                   | XDOT 4 -10 0 2 -12 1 -1 6 -3                      | TIME<br>137<br>129<br>135<br>127<br>131<br>126<br>128<br>129<br>125                             | PI<br>156<br>139<br>142<br>129<br>144<br>127<br>132<br>135                                           |
| TRIAL 1 2 3 4 5 6 7 8 9 10                         | X<br>12<br>07<br>0<br>-4<br>05<br>0.8<br>-2                                   | XDOT 4 -10 0 2 -12 1 -1 6 -3 -1                   | TIME<br>137<br>129<br>135<br>127<br>131<br>126<br>128<br>129<br>125<br>124                      | PI<br>156<br>139<br>142<br>129<br>144<br>127<br>132<br>135<br>138                                    |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11                      | X<br>12<br>07<br>04<br>05<br>08<br>-24                                        | XDOT 4 -10 0 2 -12 1 -1 6 -3 -1 1                 | TIME<br>137<br>129<br>135<br>127<br>131<br>126<br>128<br>129<br>125<br>124                      | PI<br>156<br>139<br>142<br>129<br>144<br>127<br>132<br>135<br>138<br>128                             |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12                   | X<br>12<br>07<br>04<br>05<br>08<br>-2<br>44                                   | XDOT 4 -10 0 2 -12 1 -1 6 -3 -1 1 0               | TIME<br>137<br>129<br>135<br>127<br>131<br>126<br>128<br>129<br>125<br>124<br>129<br>127        | PI<br>156<br>139<br>142<br>129<br>144<br>127<br>132<br>135<br>138<br>128<br>135                      |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13                | X<br>12<br>0<br>7<br>0<br>-4<br>0<br>5<br>0<br>-8<br>-2<br>4<br>4<br>-7       | XDOT 4 -10 0 2 -12 1 -1 6 -3 -1 1 0 4             | TIME<br>137<br>129<br>135<br>127<br>131<br>126<br>128<br>129<br>125<br>124<br>129<br>127<br>124 | PI<br>156<br>139<br>142<br>129<br>144<br>127<br>132<br>135<br>138<br>128<br>135<br>131               |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14             | X<br>12<br>0<br>7<br>0<br>-4<br>0<br>5<br>0<br>-8<br>-2<br>4<br>4<br>-7<br>-1 | XDOT 4 -10 0 2 -12 1 -1 6 -3 -1 1 0 4 -12         | TIME<br>137<br>129<br>135<br>127<br>131<br>126<br>128<br>129<br>125<br>124<br>129<br>127<br>124 | PI<br>156<br>139<br>142<br>129<br>144<br>127<br>132<br>135<br>138<br>128<br>135<br>131<br>132<br>140 |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13                | X<br>12<br>0<br>7<br>0<br>-4<br>0<br>5<br>0<br>-8<br>-2<br>4<br>4<br>-7       | XDOT 4 -10 0 2 -12 1 -1 6 -3 -1 1 0 4             | TIME<br>137<br>129<br>135<br>127<br>131<br>126<br>128<br>129<br>125<br>124<br>129<br>127<br>124 | PI<br>156<br>139<br>142<br>129<br>144<br>127<br>132<br>135<br>138<br>128<br>135<br>131               |

| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | 1 INITIAL X 12 -8 4 -6 8 -4 0 -7 5 -2 7 -3 6 8 -1 | XDOT<br>-20<br>6<br>5<br>-8<br>4<br>-14<br>8<br>-14<br>13<br>-5<br>11<br>-4<br>0<br>-7<br>3 | TIME 143 134 132 127 130 130 126 127 126 127 128 121 126 | LENGTH 0<br>PI<br>167<br>151<br>143<br>144<br>145<br>151<br>134<br>153<br>148<br>135<br>151<br>136<br>134<br>132 |
|-------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 16                                        | 5                                                 | 2                                                                                           | 125                                                      | 131                                                                                                              |
| EXPERIMENT                                | 1 INITIAL                                         |                                                                                             | SUBJ 1 PRED                                              | LENGTH 20                                                                                                        |
| TRIAL                                     | X                                                 | XDOT                                                                                        | TIME                                                     | PI                                                                                                               |
| 1                                         | 0                                                 | ၁                                                                                           | 130                                                      | 130                                                                                                              |
| 2                                         | 0                                                 | 8                                                                                           | 151                                                      | 159                                                                                                              |
| 3                                         | 2<br>-2                                           | 3                                                                                           | 130                                                      | 136                                                                                                              |
| 4                                         | -2                                                | <del>-</del> 6                                                                              | 119                                                      | 129                                                                                                              |
| 5                                         | 0                                                 | 5                                                                                           | 129                                                      | 134                                                                                                              |
| 6                                         | 0                                                 | -3                                                                                          | 122                                                      | 125                                                                                                              |
| 7                                         | 1                                                 | 0                                                                                           | 129                                                      | 130                                                                                                              |
| 8                                         | 0                                                 | ?                                                                                           | 1 2 4                                                    | 128                                                                                                              |
| 9                                         | .0                                                | <b>2</b>                                                                                    | 126                                                      |                                                                                                                  |
|                                           | 1                                                 | 1                                                                                           | 125                                                      | 128                                                                                                              |
| 10                                        | 1<br>0                                            | 1                                                                                           | 125<br>126                                               | 128<br>126                                                                                                       |
| 11                                        | 1<br>0<br>0                                       | 1<br>0<br>0                                                                                 | 125<br>126<br>124                                        | 128<br>126<br>124                                                                                                |
| 11<br>12                                  | 1<br>0<br>0<br>0                                  | 1<br>0<br>0<br>1                                                                            | 125<br>126<br>124<br>124                                 | 128<br>126<br>124<br>125                                                                                         |
| 11<br>12<br>13                            | 1<br>0<br>0<br>0                                  | 1<br>0<br>0<br>-1<br>0                                                                      | 125<br>126<br>124<br>124<br>125                          | 128<br>126<br>124<br>125<br>125                                                                                  |
| 11<br>12<br>13<br>14                      | 1<br>0<br>0<br>0<br>0                             | 1<br>0<br>0<br>-1<br>0                                                                      | 125<br>126<br>124<br>124<br>125<br>124                   | 128<br>126<br>124<br>125<br>125                                                                                  |
| 11<br>12<br>13                            | 1<br>0<br>0<br>0                                  | 1<br>0<br>0<br>-1<br>0                                                                      | 125<br>126<br>124<br>124<br>125                          | 128<br>126<br>124<br>125<br>125                                                                                  |

| EXPERIMENT 1 TRIAL  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | INITIAL X 1 -12 1 -2 1 0 0 1 0 0 0 0 0 0 | COND 1<br>XDOT<br>2<br>1<br>4<br>-2<br>4<br>-6<br>4<br>-1<br>2<br>0<br>-3<br>0<br>0<br>0               | SUBJ 2 PRED<br>TIME<br>137<br>138<br>132<br>139<br>133<br>128<br>125<br>124<br>127<br>126<br>129<br>125<br>125<br>125<br>124<br>125 | PI<br>141<br>15J<br>138<br>144<br>139<br>134<br>125<br>131<br>126<br>132<br>125<br>125<br>125<br>125<br>125                     |
|------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| EXPERIMENT 1 TRIAL  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | INITIAL X                                | COND 1<br>XDOT<br>1<br>-2<br>-2<br>0<br>0<br>0<br>0<br>2<br>-2<br>4<br>-3<br>-2<br>0<br>-2<br>-2<br>-2 | SUBJ 3 PRED<br>TIME<br>131<br>132<br>133<br>129<br>130<br>125<br>126<br>126<br>128<br>127<br>128<br>138<br>130<br>127<br>133        | LENGTH 20<br>PI<br>132<br>137<br>135<br>130<br>130<br>125<br>126<br>128<br>130<br>133<br>131<br>140<br>130<br>129<br>135<br>131 |

| EXPERIMENT 1                           | INITIAL                                                                  | COND 1                                                        | SUBJ 4 PRED                                                                                            | LENGTH 20                                                                                            |
|----------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| TRIAL                                  | X                                                                        | XDOT                                                          | TIME                                                                                                   | ΡI                                                                                                   |
| 1                                      | 4                                                                        | 12                                                            | 130                                                                                                    | 149                                                                                                  |
| 2                                      | <u>1</u>                                                                 | -12                                                           | 129                                                                                                    | 143                                                                                                  |
| 3                                      | 6                                                                        | 0                                                             | 133                                                                                                    | 139                                                                                                  |
| 4<br>5                                 | -1<br>0                                                                  | -4<br>16                                                      | 129<br>122                                                                                             | 135<br>138                                                                                           |
| 6                                      | 2                                                                        | ±6<br>4                                                       | 125                                                                                                    | 132                                                                                                  |
| 7                                      | 0                                                                        | 4                                                             | 125                                                                                                    | 129                                                                                                  |
| 8                                      | -2                                                                       | -10                                                           | 127                                                                                                    | 141                                                                                                  |
| 9                                      | Ō                                                                        | -8                                                            | 123                                                                                                    | 131                                                                                                  |
| 10                                     | -1                                                                       | -4                                                            | 125                                                                                                    | 131                                                                                                  |
| 11                                     | 2                                                                        | 2                                                             | 129                                                                                                    | 134                                                                                                  |
| 12                                     | 4                                                                        | <b></b> 6                                                     | 123                                                                                                    | 131                                                                                                  |
| 13                                     | 0                                                                        | 6                                                             | 124                                                                                                    | 130                                                                                                  |
| 14<br>15                               | 0                                                                        | <del>-</del> 7<br>7                                           | 126                                                                                                    | 133<br>134                                                                                           |
| 16                                     | 0                                                                        | <del>-</del> 8                                                | 127<br>125                                                                                             | 134                                                                                                  |
| <b>4</b> O                             | 0                                                                        | 6                                                             | 127                                                                                                    | 133                                                                                                  |
|                                        |                                                                          |                                                               |                                                                                                        |                                                                                                      |
|                                        |                                                                          |                                                               |                                                                                                        |                                                                                                      |
| EXPERIMENT 1                           | INITIAL                                                                  |                                                               | SUBJ 5 PRED                                                                                            |                                                                                                      |
| TRÍAL                                  | X                                                                        | · XDOT                                                        | TIME                                                                                                   | PΙ                                                                                                   |
| TRÍAL<br>1                             | X<br>4                                                                   | XDOT<br>6                                                     | TIME<br>127                                                                                            | PI<br>139                                                                                            |
| TRIAL<br>1<br>2                        | X<br>-4                                                                  | XDOT<br>6<br>-10                                              | TIME<br>127<br>141                                                                                     | PI<br>139<br>158                                                                                     |
| TRIAL 1 2 3                            | X<br>-4<br>-3                                                            | XDOT<br>6<br>-10<br>9                                         | TIME<br>127<br>141<br>133                                                                              | PI<br>139<br>158<br>143                                                                              |
| TRIAL<br>1<br>2<br>3<br>4              | X<br>-4<br>-3<br>-4                                                      | XDOT<br>6<br>-10<br>9<br>-12                                  | TIME<br>127<br>141<br>133<br>125                                                                       | PI<br>139<br>158<br>143<br>144                                                                       |
| TRIAL<br>1<br>2<br>3<br>4<br>5         | X<br>-4<br>-3<br>-4<br>2                                                 | XDOT<br>6<br>-10<br>9<br>-12<br>6                             | TIME<br>127<br>141<br>133<br>125<br>132                                                                | PI<br>139<br>158<br>143<br>144<br>142                                                                |
| TRIAL<br>1<br>2<br>3<br>4              | X<br>-4<br>-3<br>-4                                                      | XDOT<br>6<br>-10<br>9<br>-12                                  | TIME<br>127<br>141<br>133<br>125<br>132<br>127                                                         | PI<br>139<br>158<br>143<br>144<br>142<br>135                                                         |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6    | X<br>-4<br>-3<br>-4<br>2                                                 | XDOT<br>6<br>-10<br>9<br>-12<br>6<br>-8                       | TIME<br>127<br>141<br>133<br>125<br>132                                                                | PI<br>139<br>158<br>143<br>144<br>142                                                                |
| TRIAL 1 2 3 4 5 6 7                    | X<br>-4<br>-3<br>-4<br>2                                                 | XDOT<br>6<br>-10<br>9<br>-12<br>6<br>-8<br>7                  | TIME<br>127<br>141<br>133<br>125<br>132<br>127                                                         | PI<br>139<br>158<br>143<br>144<br>142<br>135                                                         |
| TRIAL 1 2 3 4 5 6 7 8 9                | X<br>-4<br>-3<br>-4<br>2<br>0<br>-4<br>4                                 | XDOT 6 -10 9 -12 6 -8 7 -9                                    | TIME<br>127<br>141<br>133<br>125<br>132<br>127<br>126<br>124<br>130                                    | PI<br>139<br>158<br>143<br>144<br>142<br>135<br>133<br>140<br>142<br>131                             |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11          | X<br>-4<br>-3<br>-4<br>2<br>0<br>-4<br>4<br>0<br>6                       | XDOT<br>6<br>-10<br>9<br>-12<br>6<br>-8<br>7<br>-9<br>6<br>-4 | TIME<br>127<br>141<br>133<br>125<br>132<br>127<br>126<br>124<br>130<br>127<br>130                      | PI<br>139<br>158<br>143<br>144<br>142<br>135<br>133<br>140<br>142<br>131                             |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12       | X<br>-4<br>-3<br>-4<br>2<br>0<br>0<br>-4<br>4<br>0<br>6                  | XDOT 6 -10 9 -12 6 -8 7 -9 6 -4 -10                           | TIME<br>127<br>141<br>133<br>125<br>132<br>127<br>126<br>124<br>130<br>127<br>130                      | PI<br>139<br>158<br>143<br>144<br>142<br>135<br>133<br>140<br>142<br>131<br>141                      |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13    | X<br>-4<br>-3<br>-4<br>2<br>0<br>0<br>-4<br>4<br>0<br>6<br>0             | XDOT 6 -10 9 -12 6 -8 7 -9 6 -4 -10 0                         | TIME<br>127<br>141<br>133<br>125<br>132<br>127<br>126<br>124<br>130<br>127<br>130<br>126<br>133        | PI<br>139<br>158<br>143<br>144<br>142<br>135<br>133<br>140<br>142<br>131<br>141<br>136<br>145        |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | X<br>-4<br>-3<br>-4<br>2<br>0<br>0<br>-4<br>4<br>0<br>6<br>0<br>12<br>-3 | XDOT 6 -10 9 -12 6 -8 7 -9 6 -4 4 -10 0 -8                    | TIME<br>127<br>141<br>133<br>125<br>132<br>127<br>126<br>124<br>130<br>127<br>130<br>126<br>133<br>125 | PI<br>139<br>158<br>143<br>144<br>142<br>135<br>133<br>140<br>142<br>131<br>141<br>136<br>145<br>138 |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13    | X<br>-4<br>-3<br>-4<br>2<br>0<br>0<br>-4<br>4<br>0<br>6<br>0             | XDOT 6 -10 9 -12 6 -8 7 -9 6 -4 -10 0                         | TIME<br>127<br>141<br>133<br>125<br>132<br>127<br>126<br>124<br>130<br>127<br>130<br>126<br>133        | PI<br>139<br>158<br>143<br>144<br>142<br>135<br>133<br>140<br>142<br>131<br>141<br>136<br>145        |

| _                                        | 1 INITIAL                                                  |                                                                                 |                                                                            | LENGTH 40                                                                              |
|------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| TRIAL                                    | X                                                          | XDOT                                                                            | TIME                                                                       | ΡI                                                                                     |
| 1                                        | 0                                                          | -10                                                                             | 165                                                                        | 175                                                                                    |
| 2                                        | -2                                                         | <b>***</b> 4.                                                                   | 147                                                                        | 154                                                                                    |
| 3                                        | 2                                                          | 6                                                                               | 141                                                                        | 151                                                                                    |
| 4                                        | -2                                                         | -10                                                                             | 128                                                                        | 142                                                                                    |
| 5                                        | 0                                                          | 0                                                                               | 128                                                                        | 128                                                                                    |
| 6                                        | 0                                                          | -1                                                                              | 125                                                                        | 126                                                                                    |
| 7                                        | 1                                                          | 0                                                                               | 128                                                                        | 129                                                                                    |
| 8                                        | c                                                          | <del>-</del> 2                                                                  | 124                                                                        | 126                                                                                    |
| 9                                        | 0                                                          | 1                                                                               | 128                                                                        | 129                                                                                    |
| 10                                       | 0                                                          | 0                                                                               | 131                                                                        | 131                                                                                    |
| 11                                       | Э                                                          | 0                                                                               | 128                                                                        | 128                                                                                    |
| 12                                       | 0                                                          | 0                                                                               | 128                                                                        | 128                                                                                    |
| 13                                       | 0                                                          | 1                                                                               | 125                                                                        | 126                                                                                    |
| 14                                       | 0                                                          | -8                                                                              | 123                                                                        | 131                                                                                    |
| 15                                       | 0                                                          | 0                                                                               | 124                                                                        | 124                                                                                    |
| 16                                       | 0                                                          | -4                                                                              | 124                                                                        | 128                                                                                    |
|                                          |                                                            |                                                                                 |                                                                            |                                                                                        |
| EVDERIMENT                               | 1 TAITTTAI                                                 | COND 1                                                                          | SHRI 2 DREO                                                                | 1 FAGTH 40                                                                             |
| _                                        | 1 INITIAL                                                  |                                                                                 |                                                                            | LENGTH 40                                                                              |
| TRIAL                                    | ×                                                          | XDOT                                                                            | TIME                                                                       | PI                                                                                     |
| TRIAL<br>1                               | x<br>-2                                                    | XDOT<br>10                                                                      | TIME<br>131                                                                | PI<br>141                                                                              |
| TRIAL<br>1                               | X<br>-2<br>-4                                              | XDOT<br>10<br>-10                                                               | TIME<br>131<br>140                                                         | PI<br>141<br>157                                                                       |
| TRIAL<br>1<br>2<br>3                     | X<br>-2<br>-4<br>-5                                        | XDOT<br>10<br>-10<br>-8                                                         | TIME<br>131<br>140<br>143                                                  | PI<br>141<br>157<br>159                                                                |
| TRIAL<br>1<br>2<br>3<br>4                | X<br>-2<br>-4<br>-5<br>-2                                  | XDOT<br>10<br>-10<br>-8<br>-8                                                   | TIME<br>131<br>140<br>143<br>138                                           | PI<br>141<br>157<br>159<br>150                                                         |
| TRIAL<br>1<br>2<br>3<br>4<br>5           | X<br>-2<br>-4<br>-5<br>-2<br>-1                            | XDOT<br>10<br>-10<br>-8<br>-8                                                   | TIME<br>131<br>140<br>143<br>138<br>131                                    | PI<br>141<br>157<br>159<br>150<br>133                                                  |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6      | X<br>-2<br>-4<br>-5<br>-2<br>-1<br>0                       | XDOT<br>10<br>-10<br>-8<br>-8<br>1<br>-12                                       | TIME<br>131<br>140<br>143<br>138<br>131<br>135                             | PI<br>141<br>157<br>159<br>150<br>133<br>147                                           |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | X<br>-2<br>-4<br>-5<br>-2<br>-1<br>0                       | XDOT<br>10<br>-10<br>-8<br>-8<br>1<br>-12<br>2                                  | TIME<br>131<br>140<br>143<br>138<br>131<br>135<br>128                      | PI<br>141<br>157<br>159<br>150<br>133<br>147                                           |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6      | X<br>-2<br>-4<br>-5<br>-2<br>-1<br>0                       | XDOT<br>10<br>-10<br>-8<br>-8<br>1<br>-12<br>2<br>-2                            | TIME<br>131<br>140<br>143<br>138<br>131<br>135<br>128<br>127               | PI<br>141<br>157<br>159<br>150<br>133<br>147<br>130                                    |
| TRIAL 1 2 3 4 5 6 7 8 9                  | X<br>-2<br>-4<br>-5<br>-2<br>-1<br>0<br>-1<br>-1           | XDOT<br>10<br>-10<br>-8<br>-8<br>1<br>-12<br>2                                  | TIME 131 140 143 138 131 135 128 127 125                                   | PI<br>141<br>157<br>159<br>150<br>133<br>147<br>130<br>131                             |
| TRIAL 1 2 3 4 5 6 7 8                    | X<br>-2<br>-4<br>-5<br>-2<br>-1<br>0<br>-1<br>-1           | XDOT<br>10<br>-10<br>-8<br>-8<br>1<br>-12<br>2<br>-2<br>1                       | TIME<br>131<br>140<br>143<br>138<br>131<br>135<br>128<br>127<br>125<br>126 | PI<br>141<br>157<br>159<br>150<br>133<br>147<br>130<br>131<br>126<br>129               |
| TRIAL 1 2 3 4 5 6 7 8 9 10               | X<br>-2<br>-4<br>-5<br>-2<br>-1<br>0<br>-1<br>-1           | XDOT<br>10<br>-10<br>-8<br>-8<br>1<br>-12<br>2<br>-2<br>1<br>-3                 | TIME 131 140 143 138 131 135 128 127 125 126 127                           | PI<br>141<br>157<br>159<br>150<br>133<br>147<br>130<br>131                             |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11            | X<br>-2<br>-4<br>-5<br>-2<br>-1<br>0<br>-1<br>-1<br>0      | XDOT<br>10<br>-10<br>-8<br>-8<br>1<br>-12<br>2<br>-2<br>1<br>-3<br>0            | TIME<br>131<br>140<br>143<br>138<br>131<br>135<br>128<br>127<br>125<br>126 | PI<br>141<br>157<br>159<br>150<br>133<br>147<br>130<br>131<br>126<br>129               |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12         | X<br>-2<br>-4<br>-5<br>-2<br>-1<br>0<br>-1<br>-1<br>0<br>0 | XDOT<br>10<br>-10<br>-8<br>-8<br>1<br>-12<br>2<br>-2<br>1<br>-3<br>0            | TIME 131 140 143 138 131 135 128 127 125 126 127 125                       | PI<br>141<br>157<br>159<br>150<br>133<br>147<br>130<br>131<br>126<br>129<br>127        |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13      | X<br>-2<br>-4<br>-5<br>-2<br>-1<br>0<br>-1<br>-1<br>0<br>0 | XDOT<br>10<br>-10<br>-8<br>-8<br>1<br>-12<br>2<br>-2<br>1<br>-3<br>0<br>-6<br>0 | TIME 131 140 143 138 131 135 128 127 125 126 127 125 126                   | PI<br>141<br>157<br>159<br>150<br>133<br>147<br>130<br>131<br>126<br>129<br>127<br>131 |

| EXPERIMENT I<br>TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                  | INITIAL X -1 -2 0 -4 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | COND 1<br>XDOT<br>0<br>-10<br>-4<br>-4<br>-4<br>-4<br>0<br>-4<br>1<br>0                              | SUBJ 3 PRED<br>TIME<br>143<br>136<br>139<br>131<br>129<br>144<br>136<br>134<br>128<br>129<br>129<br>138<br>129<br>127<br>128<br>128 | LENGTH 40 PI 144 150 143 141 133 148 142 137 132 129 133 139 129 130 128 128 |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| EXPERIMENT 1<br>TRIAL<br>1<br>2<br>3<br>4<br>5<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | INITIAL X  1 4 0 0 4 -1 3 0 4 -2 4 0 -2 -3 2                | COND 1<br>XDOT<br>9<br>-13<br>12<br>-15<br>9<br>-9<br>12<br>-4<br>8<br>-5<br>5<br>-7<br>4<br>-8<br>8 | SUBJ 4 PRED<br>TIME<br>130<br>127<br>130<br>128<br>124<br>126<br>125<br>128<br>125<br>127<br>128<br>125<br>127<br>127<br>125        | LENGTH 40 PI 141 141 142 143 140 137 142 132 140 135 139 132 131 137 136 129 |

| EXPERIMENT | 1 I | NITIAL    | COND       | 1   | SUBJ | 5   | PRED | LENGT | 40 F      |
|------------|-----|-----------|------------|-----|------|-----|------|-------|-----------|
| TRIAL      |     | X         | XDC        | T   |      | TIM | ΜĒ   | í     | ٥Ï        |
| 1          |     | 2         |            | 6   |      | 13  | 39   | 14    | 49        |
| 2          | •   | -2        | - 1        | . 2 |      | 13  | 34   | 13    | 50        |
| 3          | •   | -6        | 1          | . 2 |      | 13  | 31   | 14    | <b>45</b> |
| 4          |     | -2        | -1         | . 2 |      | 13  | 31   | 14    | 47        |
| 5          |     | -1        |            | 8   |      | 12  | 26   | 1:    | 34        |
| 6          |     | 0         | - 1        | . 2 |      | 12  | 27   | 1:    | 39        |
| 7          |     | <b></b> 1 |            | 7   |      | 12  | 25   | 1:    | 32        |
| 8          |     | 0         |            | 9   |      | 12  | 26   | 1:    | 35        |
| 9          |     | 2         |            | 8   |      | 12  | 29   | 1     | 41        |
| 10         |     | 0         | GS.        | •5  |      | 12  | 29   | 10    | 34        |
| 11         |     | 2         |            | 7   |      | 12  | 26   | 1:    | 37        |
| 12         |     | 0         | <b>-</b> ] | .0  |      | 12  | 29   | 1:    | 39        |
| 13         |     | 1         |            | 6   |      | 13  | 31   | 1:    | 39        |
| 14         |     | -2        | -          | -8  |      | 12  | 28   | 14    | 40        |
| 15         |     | 0         |            | 8   |      | 12  | 26   | 13    | 34        |
| 16         |     | -1        |            | 0   |      | 13  | 31   | 1:    | 32        |

| EXPERIMENT                                         |                                                 |                                                                                   |                                                                                                 |                                                                                 | 0 |
|----------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---|
| TRIAL                                              | X                                               | XDOT                                                                              | TIME                                                                                            | ΡĮ                                                                              |   |
| 1                                                  | 0                                               | -2                                                                                | 156                                                                                             | 158                                                                             |   |
| 2                                                  | -3                                              | 4                                                                                 | 161                                                                                             | 166                                                                             |   |
| 3                                                  | O                                               | <del>-</del> 6                                                                    | 157                                                                                             | 163                                                                             |   |
| 4                                                  | -2                                              | L <sub>+</sub>                                                                    | 144                                                                                             | 152                                                                             |   |
| 5                                                  | <b>~~</b> 2                                     | -6                                                                                | 147                                                                                             | 157                                                                             |   |
| 6                                                  | 0                                               | من لي                                                                             | 141                                                                                             | 145                                                                             |   |
| 7                                                  | -1                                              | -3                                                                                | 154                                                                                             | 159                                                                             |   |
| 8                                                  | 0                                               | 0<br>0<br>1                                                                       | 142                                                                                             | 142                                                                             |   |
| 9                                                  | 3                                               | 3                                                                                 | 142                                                                                             | 145                                                                             |   |
| 10                                                 | 0                                               | J                                                                                 | 140                                                                                             | 140                                                                             |   |
| 11                                                 | 2                                               |                                                                                   | 141                                                                                             | 145                                                                             |   |
| 12                                                 | 0                                               | <del>-</del> 5                                                                    | 136                                                                                             | 141                                                                             |   |
| 13                                                 | 1                                               | ၁                                                                                 | 138                                                                                             | 139                                                                             |   |
| 14                                                 | 0                                               | -3                                                                                | 137                                                                                             | 140                                                                             |   |
| 15                                                 | 0                                               | 0                                                                                 | 137                                                                                             | 137                                                                             |   |
| 16                                                 | 1                                               | <del>-</del> 7                                                                    | 136                                                                                             | 143                                                                             |   |
|                                                    |                                                 |                                                                                   |                                                                                                 |                                                                                 |   |
| EXPERIMENT                                         | 1 INITIAL                                       | COND 2                                                                            | SUBJ 2 PRED                                                                                     | LENGTH (                                                                        | 0 |
| EXPERIMENT<br>TRIAL                                | 1 INITIAL                                       | COND 2<br>XDOT                                                                    | SUBJ 2 PRED<br>TIME                                                                             | LENGTH (                                                                        | 3 |
|                                                    |                                                 |                                                                                   |                                                                                                 |                                                                                 | 0 |
| TRIAL 1                                            | X                                               | XDOT                                                                              | TIME                                                                                            | ΡĮ                                                                              | 0 |
| TRIAL                                              | X<br>7                                          | XDOT<br>-12                                                                       | T IME<br>149                                                                                    | PI<br>164                                                                       | 3 |
| TRIAL<br>1<br>2                                    | X<br>7<br>0                                     | XDOT<br>-12<br>-16                                                                | TIME<br>149<br>148                                                                              | PI<br>164<br>164                                                                | 3 |
| TRIAL<br>1<br>2<br>3                               | X<br>7<br>0<br><del>-</del> 4                   | XDOT<br>-12<br>-16<br>-20                                                         | T I ME<br>149<br>148<br>162                                                                     | PI<br>164<br>164<br>190                                                         | 0 |
| TRIAL<br>1<br>2<br>3<br>4<br>5                     | X<br>7<br>0<br>-4<br>-6<br>0                    | XDOT<br>-12<br>-16<br>-20<br>-6<br>0                                              | TIME<br>149<br>148<br>162<br>139                                                                | PI<br>164<br>164<br>190<br>154                                                  | 0 |
| TRIAL<br>1<br>2<br>3<br>4                          | X<br>7<br>0<br><del>-</del> 4<br><del>-</del> 6 | XDOT<br>-12<br>-16<br>-20<br>-6                                                   | TIME<br>149<br>148<br>162<br>139<br>146                                                         | PI<br>164<br>164<br>190<br>154<br>146                                           | 0 |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6                | X<br>7<br>0<br>-4<br>-6<br>0<br>0               | XDOT<br>-12<br>-16<br>-20<br>-6<br>0<br>3                                         | TIME<br>149<br>148<br>162<br>139<br>146<br>160                                                  | PI<br>164<br>164<br>190<br>154<br>146<br>163                                    | 0 |
| TRIAL  2  3  4  5  6  7                            | X 7 0 -4 -6 0 1 0 1 0 -1                        | XDOT<br>-12<br>-16<br>-20<br>-6<br>0<br>3                                         | TIME<br>149<br>148<br>162<br>139<br>146<br>160                                                  | PI<br>164<br>164<br>190<br>154<br>146<br>163<br>149                             | 0 |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | X 7 0 -4 -6 0 1 0 1 2                           | XDOT<br>-12<br>-16<br>-20<br>-6<br>0<br>3<br>2                                    | TIME<br>149<br>148<br>162<br>139<br>146<br>160<br>145                                           | PI<br>164<br>164<br>190<br>154<br>146<br>163<br>149                             | 0 |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | X<br>7<br>0<br>-4<br>-6<br>0<br>0<br>1          | XDOT<br>-12<br>-16<br>-20<br>-6<br>0<br>3<br>2<br>-4<br>-2                        | TIME<br>149<br>148<br>162<br>139<br>146<br>160<br>145<br>152                                    | PI<br>164<br>164<br>190<br>154<br>146<br>163<br>149<br>156<br>159               | 0 |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | X 7 0 -4 -6 0 1 0 1 2                           | XDOT<br>-12<br>-16<br>-20<br>-6<br>0<br>3<br>2<br>-4<br>-2                        | TIME<br>149<br>148<br>162<br>139<br>146<br>160<br>145<br>152<br>155                             | PI<br>164<br>164<br>190<br>154<br>146<br>163<br>149<br>156<br>159               | 0 |
| TRIAL  1 2 3 4 5 6 7 8 9 10 11                     | X 7 0 -4 -6 0 0 1 0 -1 2 0                      | XDOT<br>-12<br>-16<br>-20<br>-6<br>0<br>3<br>2<br>-4<br>-2<br>-1<br>-4            | TIME<br>149<br>148<br>162<br>139<br>146<br>160<br>145<br>152<br>155<br>147                      | PI<br>164<br>164<br>190<br>154<br>146<br>163<br>149<br>156<br>159<br>149        | 0 |
| TRIAL  1 2 3 4 5 6 7 8 9 10 11 12                  | X 7 0 -4 -6 0 0 1 0 -1 2 0 -1                   | XDOT<br>-12<br>-16<br>-20<br>-6<br>0<br>3<br>2<br>-4<br>-2<br>-1<br>-4<br>3       | TIME<br>149<br>148<br>162<br>139<br>146<br>160<br>145<br>152<br>155<br>147<br>155               | PI<br>164<br>164<br>190<br>154<br>146<br>163<br>149<br>156<br>159<br>149        | 0 |
| TRIAL  1 2 3 4 5 6 7 8 9 10 11 12 13               | X 7 0 -4 -5 0 0 1 0 -1 2 0 -1 -2                | XDOT<br>-12<br>-16<br>-20<br>-6<br>0<br>3<br>2<br>-4<br>-2<br>-1<br>-4<br>3<br>-2 | TIME<br>149<br>148<br>162<br>139<br>146<br>160<br>145<br>152<br>155<br>147<br>155<br>140<br>142 | PI<br>164<br>164<br>190<br>154<br>146<br>163<br>149<br>156<br>159<br>149<br>149 | 0 |

| EXPERIMENT                                         | 1 INITIAL                                                                       | COND 2                                   | SUBJ 3 PRED                                                                                     | LENGTH 0                                                                                             |  |
|----------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| TRIAL                                              | X                                                                               | XDOT                                     | TIME                                                                                            | ΡI                                                                                                   |  |
| 1                                                  | -1                                                                              | <b></b> 5                                | 150                                                                                             | 157                                                                                                  |  |
| 2                                                  | 1                                                                               | -4                                       | 144                                                                                             | 148                                                                                                  |  |
| 3                                                  | 2                                                                               | 8                                        | 140                                                                                             | 152                                                                                                  |  |
| 4                                                  | <b></b> 4                                                                       | <del>-</del> 6                           | 139                                                                                             | 151                                                                                                  |  |
| 5                                                  | 0                                                                               | -1                                       | 138                                                                                             | 139                                                                                                  |  |
| 6                                                  | 1                                                                               | 0                                        | 138                                                                                             | 139                                                                                                  |  |
| 7                                                  | 0                                                                               | -4                                       | 140                                                                                             | 144                                                                                                  |  |
| 8                                                  | 0                                                                               | 0                                        | 136                                                                                             | 136                                                                                                  |  |
| 9                                                  | ٥                                                                               | -8                                       | 138                                                                                             | 146                                                                                                  |  |
| 10                                                 | 2                                                                               | -7                                       | 135                                                                                             | 142                                                                                                  |  |
| 11                                                 | 0                                                                               | -4                                       | 145                                                                                             | 149                                                                                                  |  |
| 12                                                 | 1<br>0                                                                          | -1                                       | 137                                                                                             | 139                                                                                                  |  |
| 13                                                 | ٥                                                                               | 0                                        | 135                                                                                             | 135                                                                                                  |  |
| 14                                                 | 0                                                                               | <b>-</b> 6                               | 135                                                                                             | 141                                                                                                  |  |
| 15                                                 | -2                                                                              | -4                                       | 136                                                                                             | 141                                                                                                  |  |
| 16                                                 | 0                                                                               | -1                                       | 138                                                                                             | 139                                                                                                  |  |
|                                                    |                                                                                 |                                          |                                                                                                 |                                                                                                      |  |
|                                                    |                                                                                 |                                          |                                                                                                 |                                                                                                      |  |
| EXPERIMENT                                         | 1 INITIAL                                                                       |                                          | SUBJ 4 PRED                                                                                     | LENGTH 0                                                                                             |  |
| TRIAL                                              | X                                                                               | XDOT                                     | TIME                                                                                            | PΙ                                                                                                   |  |
| TRIAL<br>1                                         |                                                                                 | XDOT<br><del>-</del> 8                   | TIME<br>163                                                                                     | PI<br>172                                                                                            |  |
| TRIAL<br>1<br>2                                    | X<br>-3<br>-4                                                                   | XDOT<br>-8<br>29                         | TIME<br>163<br>187                                                                              | PI<br>172<br>216                                                                                     |  |
| TRIAL<br>1<br>2<br>3                               | x<br>-3<br>-4<br>0                                                              | XDOT<br>-8<br>29<br>-4                   | TIME<br>163<br>187<br>167                                                                       | PI<br>172<br>216<br>171                                                                              |  |
| TRIAL<br>1<br>2<br>3<br>4                          | x<br>-3<br>-4<br>0<br>-1                                                        | XDOT<br>-8<br>29                         | TIME<br>163<br>187<br>167<br>161                                                                | PI<br>172<br>216<br>171<br>164                                                                       |  |
| TRIAL<br>1<br>2<br>3<br>4<br>5                     | x<br>-3<br>-4<br>0<br>-1<br>5                                                   | XDOT<br>-8<br>29<br>-4<br>-1<br>6        | TIME<br>163<br>187<br>167<br>161<br>144                                                         | PI<br>172<br>216<br>171<br>164<br>158                                                                |  |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6                | X<br>-3<br>-4<br>0<br>-1<br>5<br>8                                              | XDOT<br>-8<br>29<br>-4<br>-1<br>6<br>-12 | TIME<br>163<br>187<br>167<br>161<br>144<br>146                                                  | PI<br>172<br>216<br>171<br>164<br>158<br>161                                                         |  |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7           | x<br>-3<br>-4<br>0<br>-1<br>5<br>8<br>-5                                        | XDOT<br>-8<br>29<br>-4<br>-1<br>6<br>-12 | TIME<br>163<br>187<br>167<br>161<br>144<br>146<br>144                                           | PI<br>172<br>216<br>171<br>164<br>158<br>161<br>153                                                  |  |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | x<br>-3<br>-4<br>0<br>-1<br>5<br>8<br>-5                                        | XDOT -8 29 -4 -1 6 -12 7 3               | TIME<br>163<br>187<br>167<br>161<br>144<br>146<br>144                                           | PI<br>172<br>216<br>171<br>164<br>158<br>161<br>153<br>149                                           |  |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | x<br>-3<br>-4<br>0<br>-1<br>5<br>8<br>-5<br>7                                   | XDOT -8 29 -4 -1 6 -12 7 3 -8            | TIME<br>163<br>187<br>167<br>161<br>144<br>146<br>144<br>137                                    | PI<br>172<br>216<br>171<br>164<br>158<br>161<br>153<br>149<br>156                                    |  |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | x<br>-3<br>-4<br>0<br>-1<br>5<br>8<br>-5<br>-7<br>-3<br>8                       | XDOT -8 29 -4 -1 6 -12 7 3 -8            | TIME<br>163<br>187<br>167<br>161<br>144<br>146<br>144<br>137<br>143                             | PI<br>172<br>216<br>171<br>164<br>158<br>161<br>153<br>149<br>156<br>158                             |  |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11                      | x<br>-3<br>-4<br>0<br>-1<br>5<br>8<br>-5<br>7<br>-3<br>8                        | XDOT -8 29 -4 -1 6 -12 7 3 -8 4          | TIME<br>163<br>187<br>167<br>161<br>144<br>146<br>144<br>137<br>143<br>143                      | PI<br>172<br>216<br>171<br>164<br>158<br>161<br>153<br>149<br>156<br>158                             |  |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12                   | x<br>-3<br>-4<br>0<br>-1<br>5<br>8<br>-5<br>.7<br>-3<br>8<br>11                 | XDOT -8 29 -4 -1 6 -12 7 3 -8 4 -15      | TIME<br>163<br>187<br>167<br>161<br>144<br>146<br>144<br>137<br>143<br>143<br>165<br>135        | PI<br>172<br>216<br>171<br>164<br>158<br>161<br>153<br>149<br>156<br>158<br>180<br>139               |  |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13                | x<br>-3<br>-4<br>0<br>-1<br>5<br>8<br>-5<br>.7<br>-3<br>8<br>11<br>0<br>-2      | XDOT -8 29 -4 -1 6 -12 7 3 -8 4 -15 4    | TIME<br>163<br>187<br>167<br>161<br>144<br>146<br>144<br>137<br>143<br>165<br>135               | PI<br>172<br>216<br>171<br>164<br>158<br>161<br>153<br>149<br>156<br>158<br>180<br>139<br>141        |  |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14             | x<br>-3<br>-4<br>0<br>-1<br>5<br>8<br>-5<br>-7<br>-3<br>8<br>11<br>0<br>-2<br>0 | XDOT -8 29 -4 -1 6 -12 7 3 -8 4 -15 4 -1 | TIME<br>163<br>187<br>167<br>161<br>144<br>146<br>144<br>137<br>143<br>143<br>165<br>135<br>137 | PI<br>172<br>216<br>171<br>164<br>158<br>161<br>153<br>149<br>156<br>158<br>180<br>139<br>141<br>138 |  |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13                | x<br>-3<br>-4<br>0<br>-1<br>5<br>8<br>-5<br>.7<br>-3<br>8<br>11<br>0<br>-2      | XDOT -8 29 -4 -1 6 -12 7 3 -8 4 -15 4    | TIME<br>163<br>187<br>167<br>161<br>144<br>146<br>144<br>137<br>143<br>165<br>135               | PI<br>172<br>216<br>171<br>164<br>158<br>161<br>153<br>149<br>156<br>158<br>180<br>139<br>141        |  |

|                                                    | 1 INITIAL                                        | COND 2                                                       |                                                                                          | LENGTH 0                                                                               |
|----------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| TRIAL                                              | X                                                | XDOT                                                         | TIME                                                                                     | ΡI                                                                                     |
| 1                                                  | 0                                                | 1                                                            | 143                                                                                      | 144                                                                                    |
| 2                                                  | -12                                              | - ]                                                          | 142                                                                                      | 156                                                                                    |
| 3                                                  | 1                                                | -20                                                          | 157                                                                                      | 177                                                                                    |
| 4                                                  | -10                                              | 20                                                           | 150                                                                                      | 173                                                                                    |
| 5                                                  | 4                                                | 1                                                            | 149                                                                                      | 155                                                                                    |
| 6                                                  | 6                                                | 16                                                           | 152                                                                                      | 170                                                                                    |
| 7                                                  | 8                                                | -12                                                          | 151                                                                                      | 166                                                                                    |
| 8                                                  | <del></del> 5                                    | <del>-</del> 6                                               | 141                                                                                      | 156                                                                                    |
| 9                                                  | 0                                                | -1                                                           | 143                                                                                      | 144                                                                                    |
| 10                                                 | 0                                                | -1                                                           | 144                                                                                      | 145                                                                                    |
| 11                                                 | 4                                                | -16                                                          | 152                                                                                      | 169                                                                                    |
| 12                                                 | -2                                               | 15                                                           | 153                                                                                      | 168                                                                                    |
| 13                                                 | 12                                               | <del>-</del> 7                                               | 146                                                                                      | 161                                                                                    |
| 14                                                 | <del></del> 7                                    | <b>-</b> 5                                                   | 143                                                                                      | 158                                                                                    |
| 15                                                 | 9                                                | <del>-</del> 6                                               | 152                                                                                      | 163                                                                                    |
| 16                                                 | -9                                               | 0                                                            | 139                                                                                      | 148                                                                                    |
|                                                    |                                                  |                                                              |                                                                                          |                                                                                        |
| FXPERIMENT                                         | 1 INITIAL                                        | COND 2                                                       | SUBJ.1 PRED                                                                              | LENGTH 20                                                                              |
| EXPERIMENT<br>TRIAL                                | 1 INITIAL                                        |                                                              | SUBJ 1 PRED                                                                              | LENGTH 20                                                                              |
| TRIAL                                              | X                                                | XDOT                                                         | TIME                                                                                     | ΡI                                                                                     |
| TRIAL 1                                            | X<br>.0                                          | XDOT<br>0                                                    | TIME<br>163                                                                              | PI<br>163                                                                              |
| TRIAL<br>1<br>2                                    | x<br>0<br>-1                                     | XDOT<br>0<br>-1                                              | TIME<br>163<br>158                                                                       | PI<br>163<br>161                                                                       |
| TRIAL<br>1<br>2<br>3                               | x<br>0<br>-1                                     | XDOT<br>0<br>-1<br>-4                                        | TIME<br>163<br>158<br>151                                                                | PI<br>163<br>161<br>155                                                                |
| TRIAL 1 2 3 4                                      | x<br>0<br>-1<br>1                                | XDOT<br>0<br>-1<br>-4<br>-6                                  | TIME<br>163<br>158<br>151<br>147                                                         | PI<br>163<br>161<br>155<br>153                                                         |
| TRIAL<br>1<br>2<br>3<br>4<br>5                     | x<br>0<br>-1<br>1<br>0                           | XDOT<br>0-1<br>-4<br>-6<br>-2                                | TIME<br>163<br>158<br>151<br>147<br>143                                                  | PI<br>163<br>161<br>155<br>153<br>145                                                  |
| TRIAL 1 2 3 4                                      | X<br>0<br>-1<br>0<br>0<br>-1                     | XDOT<br>0<br>-1<br>-4<br>-6                                  | TIME<br>163<br>158<br>151<br>147                                                         | PI<br>163<br>161<br>155<br>153                                                         |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7           | x<br>0<br>-1<br>0<br>0<br>-1                     | XDOT<br>0<br>-1<br>-4<br>-6<br>-2<br>-2                      | TIME<br>163<br>158<br>151<br>147<br>143<br>145                                           | PI<br>163<br>161<br>155<br>153<br>145<br>149                                           |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6                | X<br>0<br>-1<br>0<br>0<br>-1                     | XDOT<br>0<br>-1<br>-4<br>-6<br>-2<br>-2                      | TIME<br>163<br>158<br>151<br>147<br>143<br>145<br>147                                    | PI<br>163<br>161<br>155<br>153<br>145<br>149<br>147                                    |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | X<br>-1<br>0<br>0<br>-1<br>0                     | XDOT<br>0<br>-1<br>-4<br>-6<br>-2<br>-2<br>0                 | TIME<br>163<br>158<br>151<br>147<br>143<br>145<br>147                                    | PI<br>163<br>161<br>155<br>153<br>145<br>149<br>147                                    |
| TRIAL<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9      | x<br>0<br>-1<br>0<br>0<br>-1<br>0                | XDOT<br>0<br>-1<br>-4<br>-6<br>-2<br>-2<br>0<br>0<br>0       | TIME<br>163<br>158<br>151<br>147<br>143<br>145<br>147<br>146<br>136                      | PI<br>163<br>161<br>155<br>153<br>145<br>147<br>147                                    |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | x<br>0<br>-1<br>0<br>0<br>-1<br>0                | XDOT<br>0<br>-1<br>-4<br>-6<br>-2<br>-2<br>0<br>0<br>0       | TIME<br>163<br>158<br>151<br>147<br>143<br>145<br>147<br>146<br>136                      | PI<br>163<br>161<br>155<br>153<br>145<br>147<br>147<br>136<br>137                      |
| TRIAL 1 2 3 4 5 6 7 8 9 10                         | x<br>0<br>-1<br>0<br>0<br>-1<br>0<br>0<br>0      | XDOT<br>0<br>-1<br>-4<br>-6<br>-2<br>-2<br>0<br>0<br>0       | TIME<br>163<br>158<br>151<br>147<br>143<br>145<br>147<br>146<br>136<br>136               | PI<br>163<br>161<br>155<br>153<br>145<br>147<br>147<br>136<br>137                      |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12                   | x<br>0<br>-1<br>0<br>0<br>-1<br>0                | XDOT<br>0<br>-1<br>-4<br>-6<br>-2<br>-2<br>0<br>0<br>-1<br>0 | TIME<br>163<br>158<br>151<br>147<br>143<br>145<br>147<br>146<br>136<br>144<br>151        | PI<br>163<br>161<br>155<br>153<br>145<br>147<br>147<br>136<br>137<br>144<br>152        |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13                | x<br>0<br>-1<br>0<br>0<br>-1<br>0<br>0<br>0<br>0 | XDOT<br>0<br>-1<br>-4<br>-6<br>-2<br>-2<br>0<br>0<br>-1<br>1 | TIME<br>163<br>158<br>151<br>147<br>143<br>145<br>147<br>146<br>136<br>136<br>144<br>151 | PI<br>163<br>161<br>155<br>153<br>145<br>147<br>147<br>136<br>137<br>144<br>152<br>140 |

| EXPERIMENT 1                        | INITIAL                               | COND 2                                 | SUBJ 2 PRED                                                                              | LENGTH 20                                                                                     |
|-------------------------------------|---------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| TRIAL                               | X                                     | TOCX                                   | TIME                                                                                     | ΡI                                                                                            |
| 1                                   | -1                                    | 2                                      | 152                                                                                      | 153                                                                                           |
| 2                                   | -2                                    | -12                                    | 149                                                                                      | 165                                                                                           |
| 3                                   | O                                     | <del>-</del> 6                         | 157                                                                                      | 163                                                                                           |
| 4                                   | -4                                    | -2                                     | 144                                                                                      | 150                                                                                           |
| 5                                   | 0                                     | <b>-</b> 3                             | 154                                                                                      | 157                                                                                           |
| 6                                   | 1                                     | rm ]                                   | 158                                                                                      | 160                                                                                           |
| 7                                   | Ó                                     | <b>~</b> 2                             | 146                                                                                      | 148                                                                                           |
| 8                                   | 0                                     | 0                                      | 147                                                                                      | 147                                                                                           |
| 9                                   | 0                                     | -1                                     | 149                                                                                      | 150                                                                                           |
| 10                                  | 0                                     | 0                                      | 147                                                                                      | 147                                                                                           |
| 11                                  | 0                                     | -1                                     | 152                                                                                      | 153                                                                                           |
| 12                                  | 0                                     | 0                                      | 142                                                                                      | 142                                                                                           |
| 13                                  | -1                                    | -3                                     | 152                                                                                      | 157                                                                                           |
| 14                                  | 0                                     | 0                                      | 140                                                                                      | 140                                                                                           |
| 15                                  | 0                                     | 0                                      | 148                                                                                      | 148                                                                                           |
| 16                                  | 0                                     | 0                                      | 138                                                                                      | 138                                                                                           |
|                                     |                                       |                                        |                                                                                          |                                                                                               |
| EVDEDIMENT 1                        | T N I T T T A I                       | COND 3                                 | SHOL 2 DOED                                                                              | LENCTH 20                                                                                     |
| EXPERIMENT 1                        |                                       |                                        | SUBJ 3 PRED                                                                              | LENGTH 20                                                                                     |
| TRIAL                               | X                                     | XDOT                                   | TIME                                                                                     | PΙ                                                                                            |
| TRIAL<br>1                          | X<br>-1                               | XDOT                                   | TIME<br>146                                                                              | PI<br>151                                                                                     |
| TRIAL<br>1                          | X<br>-1<br>0                          | XDOT<br>-3<br>-12                      | TIME<br>146<br>143                                                                       | PI<br>151<br>155                                                                              |
| TRIAL<br>1<br>2<br>3                | X<br>-1<br>0<br>0                     | XDOT<br>-3<br>-12                      | TIME<br>146<br>143<br>142                                                                | PI<br>151<br>155<br>143                                                                       |
| TRIAL<br>1<br>2<br>3<br>4           | x<br>-1<br>0<br>0                     | XDOT<br>-3<br>-12<br>1<br>-2           | TIME<br>146<br>143<br>142<br>141                                                         | PI<br>151<br>155<br>143<br>143                                                                |
| TRIAL<br>1<br>2<br>3<br>4<br>5      | X<br>-1<br>0<br>0<br>0                | XDOT<br>-3<br>-12<br>1<br>-2<br>0      | TIME<br>146<br>143<br>142<br>141<br>146                                                  | PI<br>151<br>155<br>143<br>143                                                                |
| TRIAL 1 2 3 4 5                     | X<br>-1<br>0<br>0<br>0<br>0           | XDOT<br>-3<br>-12<br>1<br>-2<br>0      | TIME<br>146<br>143<br>142<br>141<br>146<br>144                                           | PI<br>151<br>155<br>143<br>143<br>146<br>144                                                  |
| TRIAL 1 2 3 4 5 6 7                 | X<br>-1<br>0<br>0<br>0<br>0           | XDOT<br>-3<br>-12<br>1<br>-2<br>0<br>0 | TIME<br>146<br>143<br>142<br>141<br>146<br>144                                           | PI<br>151<br>155<br>143<br>143<br>146<br>144                                                  |
| TRIAL 1 2 3 4 5 6 7 8               | x<br>-1<br>0<br>0<br>0<br>0           | XDOT<br>-3<br>-12<br>1<br>-2<br>0<br>0 | TIME<br>146<br>143<br>142<br>141<br>146<br>144<br>137                                    | PI<br>151<br>155<br>143<br>143<br>146<br>144<br>137                                           |
| TRIAL 1 2 3 4 5 6 7 8 9             | x<br>-1<br>0<br>0<br>0<br>0<br>0      | XDOT -3 -12 1 -2 0 0 0 -4 1            | TIME<br>146<br>143<br>142<br>141<br>146<br>144<br>137<br>142                             | PI<br>151<br>155<br>143<br>143<br>146<br>144<br>137<br>146                                    |
| TRIAL 1 2 3 4 5 6 7 8 9 10          | x<br>-1<br>0<br>0<br>0<br>0<br>0      | XDOT -3 -12 1 -2 0 0 -4 1 -2           | TIME<br>146<br>143<br>142<br>141<br>146<br>144<br>137<br>142<br>138                      | PI<br>151<br>155<br>143<br>143<br>146<br>144<br>137<br>146<br>141                             |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11       | x<br>-1<br>0<br>0<br>0<br>0<br>0      | XDOT -3 -12 1 -2 0 0 -4 1 -2 0         | TIME<br>146<br>143<br>142<br>141<br>146<br>144<br>137<br>142<br>138<br>135               | PI<br>151<br>155<br>143<br>143<br>146<br>144<br>137<br>146<br>141<br>137                      |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12    | x<br>-1<br>0<br>0<br>0<br>0<br>0<br>0 | XDOT -3 -12 1 -2 0 0 -4 1 -2 0 -2      | TIME<br>146<br>143<br>142<br>141<br>146<br>144<br>137<br>142<br>138<br>135<br>138        | PI<br>151<br>155<br>143<br>144<br>146<br>144<br>137<br>146<br>141<br>137                      |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 | x<br>-1<br>0<br>0<br>0<br>0<br>0<br>0 | XDOT -3 -12 1 -2 0 0 -4 1 -2 0 -2 0    | TIME<br>146<br>143<br>142<br>141<br>146<br>144<br>137<br>142<br>138<br>135<br>138<br>137 | PI<br>151<br>155<br>143<br>144<br>146<br>144<br>137<br>146<br>141<br>137<br>138<br>140<br>137 |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12    | x<br>-1<br>0<br>0<br>0<br>0<br>0<br>0 | XDOT -3 -12 1 -2 0 0 -4 1 -2 0 -2      | TIME<br>146<br>143<br>142<br>141<br>146<br>144<br>137<br>142<br>138<br>135<br>138        | PI<br>151<br>155<br>143<br>144<br>146<br>144<br>137<br>146<br>141<br>137                      |

| EXPERIMENT                                                             | 1 | INITIAL                           |                                                                               | SUBJ |                                                                                                 | LENGTH 20                                                                                            |
|------------------------------------------------------------------------|---|-----------------------------------|-------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| TRIAL                                                                  |   | X                                 | XDOT                                                                          |      | TIME                                                                                            | PI                                                                                                   |
| 1                                                                      |   | 4                                 | 7                                                                             |      | 152                                                                                             | 166                                                                                                  |
| 2                                                                      |   | -2                                | 0                                                                             |      | 158                                                                                             | 160                                                                                                  |
| 3                                                                      |   | 4                                 | 4                                                                             |      | 151                                                                                             | 161                                                                                                  |
| 4                                                                      |   | -4                                | 2                                                                             |      | 148                                                                                             | 153                                                                                                  |
| 5                                                                      |   | 0                                 | 7                                                                             |      | 142                                                                                             | 149                                                                                                  |
| 6                                                                      |   | - 1                               | -4                                                                            |      | 142                                                                                             | 148                                                                                                  |
| 7                                                                      |   | 1                                 | -4                                                                            |      | 148                                                                                             | 152                                                                                                  |
| 8                                                                      |   | -1                                | 0                                                                             |      | 145                                                                                             | 146                                                                                                  |
| 9                                                                      |   | 2                                 | 1                                                                             |      | 140                                                                                             | 144                                                                                                  |
| 10                                                                     |   | -2                                | 0                                                                             |      | 144                                                                                             | 146                                                                                                  |
| 11                                                                     |   | 4                                 | 1                                                                             |      | 146                                                                                             | 150                                                                                                  |
| 12                                                                     |   | 4                                 | -3                                                                            |      | 140                                                                                             | 148                                                                                                  |
| 13                                                                     |   | 1                                 | 0                                                                             |      | 138                                                                                             | 139                                                                                                  |
| 14                                                                     |   | 1                                 | -4                                                                            |      | 136                                                                                             | 140                                                                                                  |
| 15                                                                     |   | 0                                 | ဝ                                                                             |      | 140                                                                                             | 140                                                                                                  |
| 16                                                                     |   | 0                                 | G                                                                             |      | 139                                                                                             | 139                                                                                                  |
|                                                                        |   |                                   |                                                                               |      |                                                                                                 |                                                                                                      |
| EXPERIMENT<br>TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 1 | INITIAL X 4 -4 0 -6 5 -2 2 -3 0 4 | XDOT 4 -8 -4 -2 -1 8 0 -4 -3 2                                                | SUBJ | 5 PRED<br>TIME<br>147<br>143<br>142<br>145<br>146<br>153<br>148<br>145<br>148<br>145            | LENGTH 20<br>PI<br>157<br>158<br>146<br>155<br>151<br>161<br>150<br>153<br>152<br>150<br>148         |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12                                       | 1 | X 44 0 6 5 2 2 3 3 0 4 0          | XDOT 4 -8 -2 -1 8 0 -4 -3 2 6                                                 | SUBJ | TIME<br>147<br>143<br>142<br>145<br>146<br>153<br>148<br>145<br>148<br>141<br>150               | PI<br>157<br>158<br>146<br>155<br>151<br>161<br>150<br>153<br>152<br>150<br>148<br>156               |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13                                    | 1 | X 44 0 6 5 2 2 3 3 0 4 0          | XDOT<br>4<br>-8<br>-4<br>-2<br>-1<br>8<br>0<br>-4<br>-3<br>2<br>6<br>-4       | SUBJ | TIME<br>147<br>143<br>142<br>145<br>146<br>153<br>148<br>145<br>148<br>141<br>150<br>145        | PI<br>157<br>158<br>146<br>155<br>151<br>161<br>150<br>153<br>152<br>150<br>148<br>156<br>152        |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14                                 | 1 | X 44065223304050                  | XDOT<br>4<br>-8<br>-4<br>-2<br>-1<br>8<br>0<br>-4<br>-3<br>2<br>6<br>-4<br>-4 | SUBJ | TIME<br>147<br>143<br>142<br>145<br>146<br>153<br>148<br>145<br>148<br>141<br>150<br>145<br>139 | PI<br>157<br>158<br>146<br>155<br>151<br>161<br>150<br>153<br>152<br>150<br>148<br>156<br>152<br>143 |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13                                    | 1 | X 44 0 6 5 2 2 3 3 0 4 0          | XDOT<br>4<br>-8<br>-4<br>-2<br>-1<br>8<br>0<br>-4<br>-3<br>2<br>6<br>-4       | SUBJ | TIME<br>147<br>143<br>142<br>145<br>146<br>153<br>148<br>145<br>148<br>141<br>150<br>145        | PI<br>157<br>158<br>146<br>155<br>151<br>161<br>150<br>153<br>152<br>150<br>148<br>156<br>152        |

| EXPERIMENT 1                                       | LINITIAL                                           |                                                                           |                                                                                          | LENGTH 40                                                                              |
|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| TRIAL                                              | X                                                  | XDOT                                                                      | TIME                                                                                     | ÐΙ                                                                                     |
| 1                                                  | 0                                                  | <del></del> 4                                                             | 189                                                                                      | 193                                                                                    |
| 2                                                  | 0                                                  | <b>~</b> 2                                                                | 196                                                                                      | 198                                                                                    |
| 3                                                  | 0                                                  | <b></b> 4                                                                 | 165                                                                                      | 169                                                                                    |
| 4                                                  | -1                                                 | -2                                                                        | 161                                                                                      | 165                                                                                    |
| 5                                                  | -2                                                 | -12                                                                       | 157                                                                                      | 173                                                                                    |
| 6                                                  | -1                                                 | -3                                                                        | 152                                                                                      | 157                                                                                    |
| 7                                                  | 0                                                  | -1                                                                        | 158                                                                                      | 159                                                                                    |
| 8                                                  | Э                                                  | O                                                                         | 142                                                                                      | 142                                                                                    |
| 9                                                  | 1                                                  | 0                                                                         | 146                                                                                      | 147                                                                                    |
| 10                                                 | 0                                                  | -1                                                                        | 146                                                                                      | 147                                                                                    |
| 11                                                 | 0                                                  | 0                                                                         | 147                                                                                      | 147                                                                                    |
| 12                                                 | 0                                                  | 0                                                                         | 145                                                                                      | 145                                                                                    |
| 13                                                 | 0                                                  | ٥                                                                         | 138                                                                                      | 138                                                                                    |
| 14                                                 | 0                                                  | -4                                                                        | 136                                                                                      | 140                                                                                    |
| 15                                                 | 0                                                  | 0                                                                         | 139                                                                                      | 139                                                                                    |
| 16                                                 | 0                                                  | 0                                                                         | 141                                                                                      | 141                                                                                    |
| - •                                                | <del>.</del>                                       |                                                                           | • • •                                                                                    |                                                                                        |
|                                                    |                                                    |                                                                           |                                                                                          |                                                                                        |
|                                                    |                                                    |                                                                           |                                                                                          |                                                                                        |
| EXPERIMENT :                                       | 1 INITIAL                                          | COND 2                                                                    | SUBJ 2 PRED                                                                              | LENGTH 40                                                                              |
| EXPERIMENT :                                       | I INITIAL                                          | COND 2<br>XDOT                                                            | SUBJ 2 PRED<br>TIME                                                                      | LENGTH 40<br>PI                                                                        |
|                                                    |                                                    |                                                                           |                                                                                          |                                                                                        |
| TRIAL<br>1<br>2                                    | X                                                  | XDOT                                                                      | TIME                                                                                     | PI                                                                                     |
| TRIAL<br>1                                         | ×                                                  | XDOT<br>-1                                                                | TIME<br>167                                                                              | PI<br>168                                                                              |
| TRIAL<br>1<br>2                                    | X<br>0<br>-4                                       | XDOT<br>-1<br>-10                                                         | TIME<br>167<br>169                                                                       | PI<br>168<br>186                                                                       |
| TRIAL<br>1<br>2<br>3                               | X<br>0<br>-4<br>-4                                 | XDOT<br>-1<br>-10<br>4                                                    | TIME<br>167<br>169<br>187                                                                | PI<br>168<br>186<br>193                                                                |
| TRIAL<br>1<br>2<br>3<br>4                          | ×<br>0<br>-4<br>-4<br>-4                           | XDOT<br>-1<br>-10<br>4<br>-8                                              | TIME<br>167<br>169<br>187<br>150                                                         | PI<br>168<br>186<br>193<br>165                                                         |
| TRIAL<br>1<br>2<br>3<br>4<br>5                     | X<br>0<br>-4<br>-4<br>-4<br>-1                     | XDOT<br>-1<br>-10<br>4<br>-8<br>-2                                        | TIME<br>167<br>169<br>187<br>150<br>143                                                  | PI<br>168<br>186<br>193<br>165<br>147                                                  |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6                | X<br>0<br>-4<br>-4<br>-4<br>-1<br>-1               | XDOT<br>-1<br>-10<br>-4<br>-8<br>-2<br>0                                  | TIME<br>167<br>169<br>187<br>150<br>143<br>153                                           | PI<br>168<br>186<br>193<br>165<br>147<br>154                                           |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7           | X<br>0<br>-4<br>-4<br>-4<br>-1<br>-1               | XDOT<br>-1<br>-10<br>4<br>-8<br>-2<br>0<br>-7                             | TIME<br>167<br>169<br>187<br>150<br>143<br>153                                           | PI<br>168<br>186<br>193<br>165<br>147<br>154<br>159                                    |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | X<br>0<br>-4<br>-4<br>-4<br>-1<br>-1<br>0          | XDOT<br>-1<br>-10<br>4<br>-8<br>-2<br>0<br>-7<br>-4                       | TIME<br>167<br>169<br>187<br>150<br>143<br>153<br>152<br>160                             | PI<br>168<br>186<br>193<br>165<br>147<br>154<br>159                                    |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | X<br>0<br>-4<br>-4<br>-4<br>-1<br>-1<br>0<br>0     | XDOT<br>-1<br>-10<br>4<br>-8<br>-2<br>0<br>-7<br>-4                       | TIME<br>167<br>169<br>187<br>150<br>143<br>153<br>152<br>160<br>146                      | PI<br>168<br>186<br>193<br>165<br>147<br>154<br>159<br>164                             |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | X<br>0<br>-4<br>-4<br>-4<br>-1<br>-1<br>0<br>0     | XDOT<br>-1<br>-10<br>4<br>-8<br>-2<br>0<br>-7<br>-4<br>0                  | TIME<br>167<br>169<br>187<br>150<br>143<br>153<br>152<br>160<br>146<br>148               | PI<br>168<br>186<br>193<br>165<br>147<br>154<br>159<br>164<br>147                      |
| TRIAL 1 2 3 4 5 6 7 8 9 10                         | X<br>0<br>-4<br>-4<br>-4<br>-1<br>-1<br>0<br>0     | XDOT<br>-1<br>-10<br>4<br>-8<br>-2<br>0<br>-7<br>-4<br>0                  | TIME<br>167<br>169<br>187<br>150<br>143<br>153<br>152<br>160<br>146<br>148<br>145        | PI<br>168<br>186<br>193<br>165<br>147<br>159<br>164<br>147<br>149                      |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11                      | X<br>0<br>-4<br>-4<br>-4<br>-1<br>-1<br>0<br>0     | XDOT<br>-10<br>-10<br>4<br>-8<br>-2<br>0<br>-7<br>-4<br>0<br>1<br>-5<br>3 | TIME<br>167<br>169<br>187<br>150<br>143<br>153<br>152<br>160<br>146<br>148<br>145<br>149 | PI<br>168<br>186<br>193<br>165<br>147<br>154<br>159<br>164<br>147<br>149               |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13                | X<br>0<br>-4<br>-4<br>-1<br>-1<br>0<br>0<br>1<br>0 | XDOT<br>-10<br>-10<br>4<br>-8<br>-2<br>0<br>-7<br>-4<br>0<br>1<br>-5<br>3 | TIME<br>167<br>169<br>187<br>150<br>143<br>153<br>152<br>160<br>146<br>148<br>145<br>149 | PI<br>168<br>186<br>193<br>165<br>147<br>159<br>164<br>147<br>149<br>150<br>154<br>151 |

| EXPERIMENT 1 TRIAL  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16                                       | INITIAL X                                                               | COND 2<br>XDOT -2<br>-3<br>4 -8<br>-1<br>0<br>0<br>1<br>0<br>-1<br>0                   | SUBJ 3 PRED<br>TIME<br>148<br>154<br>141<br>143<br>146<br>143<br>139<br>146<br>141<br>137<br>138<br>138<br>138<br>138<br>137 | LENGTH 40<br>PI<br>150<br>162<br>145<br>158<br>147<br>143<br>139<br>147<br>142<br>138<br>138<br>138<br>138<br>138 |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| EXPERIMENT 1<br>TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | INITIAL X 6 -3 4 -3 8 0 7 -4 8 -7 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | COND 2<br>XDOT -3<br>-5<br>-10<br>0<br>-2<br>-12<br>-7<br>0<br>-4<br>4<br>0<br>-3<br>4 | SUBJ 4 PRED<br>TIME<br>159<br>154<br>153<br>154<br>143<br>139<br>154<br>147<br>143<br>147<br>143<br>147<br>143<br>147<br>147 | LENGTH 40 PI 166 164 157 155 151 164 151 152 155 153 141 141 137 140                                              |

| EXPERIMENT | 1 INITIAL      | COND 2         | SUBJ 5 PRED | LENGTH 40 |
|------------|----------------|----------------|-------------|-----------|
| TRIAL      | X              | XDOT           | TIME        | PI        |
| 1          | 3              | <b>-</b> 6     | 162         | 169       |
| 2          | <del>-</del> 6 | -3             | 153         | 164       |
| 3          | 0              | 4              | 143         | 147       |
| 4          | <del>-</del> 6 | 4              | 151         | 159       |
| 5          | 4              | 1              | 147         | 153       |
| 6          | ··· 4          | 0              | 144         | 148       |
| 7          | 2              | 2              | 148         | 143       |
| 8          | 0              | <del>-</del> 7 | 140         | 147       |
| 9          | 2              | 4              | 145         | 152       |
| 10         | 0              | 5              | 157         | 162       |
| 11         | 4              | O              | 161         | 165       |
| 12         | ~2             | 1              | 158         | 160       |
| 13         | 9              | <b></b> 2      | 157         | 166       |
| 14         | -4             | 1              | 154         | 158       |
| 15         | 4              | -1             | 151         | 157       |
| 16         | -1             | 5              | 153         | 158       |

| EXPERIM                                            | ENT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | INITIAL                                                                                              | COND                                                                   | 1 | SUBJ                                                                          | 1 PR                                                      | ED LENGTH                                                                      | 0                                                                                                                  |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---|-------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| TRIAL                                              | X2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X20                                                                                                  | Х3                                                                     |   | X30                                                                           | TIME                                                      | ITGL                                                                           | ΡI                                                                                                                 |
| 1                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                    | 8                                                                      |   | -48                                                                           | 232                                                       | 375                                                                            | 658                                                                                                                |
| 2                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -27                                                                                                  | 0                                                                      |   | -12                                                                           | 305                                                       | 45                                                                             | 389                                                                                                                |
| 3                                                  | <b>~</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16                                                                                                   | -2                                                                     |   | -26                                                                           | 256                                                       | 15                                                                             | 317                                                                                                                |
| 4                                                  | <b>∞</b> 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                    | -4                                                                     |   | -26                                                                           | 224                                                       | 0                                                                              | 263                                                                                                                |
| 5                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15                                                                                                   | -2                                                                     |   | 1                                                                             | 230                                                       | 23                                                                             | 274                                                                                                                |
| . 6                                                | -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -16                                                                                                  | 1                                                                      |   | -10                                                                           | 235                                                       | 78                                                                             | 354                                                                                                                |
| 7                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                   | -1                                                                     |   | 0                                                                             | 234                                                       | 90                                                                             | 347                                                                                                                |
| 8                                                  | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                                                                   | <b>≖</b> ]                                                             |   | <b>-</b> 5                                                                    | 241                                                       | 0                                                                              | 260                                                                                                                |
| 9                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22                                                                                                   | 0                                                                      |   | <b>-</b> 36                                                                   | 265                                                       | 36                                                                             | 359                                                                                                                |
| 10                                                 | <del></del> 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                   | O                                                                      |   | -22                                                                           | 246                                                       | 4                                                                              | 292                                                                                                                |
| 11                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del></del> 5                                                                                        | <del></del> 5                                                          |   | -20                                                                           | 255                                                       | 24                                                                             | 316                                                                                                                |
| 12                                                 | <del></del> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                   | 1                                                                      |   | -40                                                                           | 250                                                       | 27                                                                             | 330                                                                                                                |
| 13                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                    | O                                                                      |   | <b>-</b> 3                                                                    | 223                                                       | 0                                                                              | 232                                                                                                                |
| 14                                                 | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>-</b> 7                                                                                           | -1                                                                     |   | O                                                                             | 225                                                       | O                                                                              | 236                                                                                                                |
| 15                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                                                   | 0                                                                      |   | -2                                                                            | 234                                                       | O                                                                              | 248                                                                                                                |
| 16                                                 | *** <u>*</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                   | 0                                                                      |   | 2                                                                             | 217                                                       | O                                                                              | 229                                                                                                                |
| 17                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                    | 0                                                                      |   | -2                                                                            | 222                                                       | O                                                                              | 228                                                                                                                |
| 18                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                    | 1                                                                      |   | -1                                                                            | 228                                                       | 0                                                                              | 237                                                                                                                |
| 19                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                   | 1                                                                      |   | 0                                                                             | 217                                                       | 2                                                                              | 243                                                                                                                |
| 20                                                 | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                    | <del>-</del> 5                                                         |   | 0                                                                             | 215                                                       | 8                                                                              | 231                                                                                                                |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      |                                                                        |   |                                                                               |                                                           |                                                                                |                                                                                                                    |
| =V0=0.1M                                           | 5u7 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9 K. 9 ** 9 A.                                                                                       | CO 81 D                                                                |   | 6.10.1                                                                        |                                                           | EQ LENGTH                                                                      | •                                                                                                                  |
| EXPERIM                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INITIAL                                                                                              | COND                                                                   | 1 | SUBJ                                                                          |                                                           | ED LENGTH                                                                      | 0                                                                                                                  |
| TRIAL                                              | X 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X2D                                                                                                  | X3                                                                     | 1 | X3D                                                                           | TIME                                                      | ITGL                                                                           | ΡI                                                                                                                 |
| TRIAL<br>1                                         | X 2<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X2D<br>-4                                                                                            | ×3<br>0                                                                | 1 | X3D<br>4                                                                      | 71ME<br>263                                               | ITGL<br>150                                                                    | PI<br>421                                                                                                          |
| TRIAL<br>1<br>2                                    | X 2<br>0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X2D<br>-4<br>-1                                                                                      | ×3<br>0<br>-1                                                          | 1 | X3D<br>4<br>0                                                                 | 71ME<br>263<br>249                                        | ITGL<br>150<br>90                                                              | PI<br>421<br>341                                                                                                   |
| TRIAL<br>1<br>2<br>3                               | ×2<br>0<br>1<br>-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X2D<br>-4<br>-1<br>0                                                                                 | ×3<br>0<br>-1<br>0                                                     | 1 | X3D<br>4<br>0<br>6                                                            | TIME<br>263<br>249<br>222                                 | ITGL<br>150<br>90<br>45                                                        | PI<br>421<br>341<br>276                                                                                            |
| TRIAL<br>1<br>2<br>3<br>4                          | ×2<br>0<br>1<br>-3<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X2D<br>-4<br>-1<br>0<br>0                                                                            | ×3<br>0<br>-1<br>0                                                     | 1 | X3D<br>4<br>0<br>6<br>3                                                       | 71ME<br>263<br>249<br>222<br>249                          | ITGL<br>150<br>90<br>45<br>45                                                  | PI<br>421<br>341<br>276<br>300                                                                                     |
| TRIAL 1 2 3 4 5                                    | X2<br>0<br>1<br>-3<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X2D<br>-4<br>-1<br>0<br>0                                                                            | ×3<br>0<br>-1<br>0<br>1                                                | 1 | X3D<br>4<br>0<br>6<br>3<br>5                                                  | TIME<br>263<br>249<br>222<br>249<br>247                   | ITGL<br>150<br>90<br>45<br>45<br>47                                            | PI<br>421<br>341<br>276<br>300<br>306                                                                              |
| TRIAL 1 2 3 4 5 6                                  | X2<br>0<br>1<br>-3<br>1<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X2D<br>-4<br>-1<br>0<br>0<br>5<br>7                                                                  | ×3<br>0<br>-1<br>0<br>1<br>1                                           | 1 | X3D<br>4<br>0<br>6<br>3<br>5<br>8                                             | TIME<br>263<br>249<br>222<br>249<br>247<br>252            | 1TGL<br>150<br>90<br>45<br>45<br>47<br>71                                      | PI<br>421<br>341<br>276<br>300<br>306<br>357                                                                       |
| TRIAL 1 2 3 4 5 6 7                                | X2<br>0<br>1<br>-3<br>1<br>0<br>13<br>-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X2D<br>-4<br>-1<br>0<br>0<br>5<br>7<br>3                                                             | X3<br>0<br>-1<br>0<br>1<br>1<br>-2                                     | 1 | X3D<br>4<br>0<br>6<br>3<br>5<br>8<br>-1                                       | TIME<br>263<br>249<br>222<br>249<br>247<br>252<br>227     | 1TGL<br>150<br>90<br>45<br>45<br>47<br>71                                      | PI<br>421<br>341<br>276<br>300<br>306<br>357<br>284                                                                |
| TRIAL 1 2 3 4 5 6 7 8                              | X2<br>0<br>1<br>-3<br>1<br>0<br>13<br>-2<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X2D<br>-4<br>-1<br>0<br>0<br>5<br>7<br>3<br>8                                                        | X3<br>0<br>-1<br>0<br>1<br>1<br>-2<br>1                                | 1 | X3D<br>4<br>0<br>6<br>3<br>5<br>8<br>-1<br>2                                  | TIME 263 249 222 249 247 252 227 230                      | 1TGL<br>150<br>90<br>45<br>45<br>47<br>71<br>50                                | PI<br>421<br>341<br>276<br>300<br>306<br>357<br>284<br>302                                                         |
| TRIAL 1 2 3 4 5 6 7 8 9                            | X2<br>0<br>1<br>-3<br>1<br>0<br>13<br>-2<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X2D<br>-4<br>-1<br>0<br>0<br>5<br>7<br>3<br>8                                                        | X3<br>0<br>-1<br>0<br>1<br>1<br>-2<br>1<br>0                           | 1 | X3D<br>4<br>0<br>6<br>3<br>5<br>8<br>-1<br>2<br>-7                            | TIME 263 249 222 249 247 252 227 230 265                  | 1TGL<br>150<br>90<br>45<br>45<br>47<br>71<br>50<br>60                          | PI<br>421<br>341<br>276<br>300<br>306<br>357<br>284<br>302<br>280                                                  |
| TRIAL 1 2 3 4 5 6 7 8 9 10                         | X2<br>0<br>1<br>-3<br>1<br>0<br>13<br>-2<br>0<br>-2<br>-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X2D<br>-4<br>-1<br>0<br>5<br>7<br>3<br>8<br>8                                                        | X3<br>0<br>-1<br>0<br>1<br>1<br>1<br>-2<br>1<br>0                      | 1 | X3D<br>4<br>0<br>6<br>3<br>5<br>8<br>-1<br>2<br>-7                            | TIME 263 249 222 249 247 252 227 230 265 244              | 1TGL<br>150<br>90<br>45<br>45<br>47<br>71<br>50<br>60                          | PI<br>421<br>341<br>276<br>300<br>306<br>357<br>284<br>302<br>280<br>246                                           |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11                      | X2<br>0<br>1<br>-3<br>1<br>0<br>13<br>-2<br>0<br>-2<br>-1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X2D<br>-4<br>-1<br>0<br>0<br>5<br>7<br>3<br>8<br>8<br>0                                              | X3<br>0<br>-1<br>0<br>1<br>1<br>1<br>-2<br>1<br>0<br>0                 | 1 | X3D<br>4<br>0<br>6<br>3<br>5<br>8<br>-1<br>2<br>-7<br>1<br>2                  | TIME 263 249 222 249 247 252 227 230 265 244 235          | 1TGL<br>150<br>90<br>45<br>45<br>47<br>71<br>50<br>60<br>0                     | PI<br>421<br>341<br>276<br>300<br>306<br>357<br>284<br>302<br>280<br>246<br>255                                    |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12                   | X2<br>0<br>1<br>-3<br>1<br>0<br>13<br>-2<br>0<br>-2<br>-1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X2D<br>-4<br>-1<br>0<br>0<br>5<br>7<br>3<br>8<br>0<br>14                                             | X3<br>0<br>-1<br>0<br>1<br>1<br>-2<br>1<br>0<br>0<br>-2                | 1 | X3D<br>4<br>0<br>6<br>3<br>5<br>8<br>-1<br>2<br>-7<br>1<br>2                  | TIME 263 249 222 249 247 252 227 230 265 244 235 228      | 1TGL<br>150<br>90<br>45<br>45<br>47<br>71<br>50<br>60<br>0                     | PI<br>421<br>341<br>276<br>300<br>357<br>284<br>302<br>280<br>246<br>255<br>238                                    |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13                | X2<br>0<br>1<br>-3<br>1<br>0<br>13<br>-2<br>0<br>-2<br>-1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X2D<br>-4<br>-1<br>0<br>0<br>5<br>7<br>3<br>8<br>0<br>14                                             | X3<br>0<br>-1<br>0<br>1<br>1<br>-2<br>1<br>0<br>0<br>-2<br>0           | 1 | X3D<br>4<br>0<br>6<br>3<br>5<br>8<br>-1<br>2<br>-7<br>1<br>2<br>-3<br>-1      | TIME 263 249 222 249 247 252 7 230 265 228 238            | 1TGL<br>150<br>90<br>45<br>45<br>47<br>71<br>50<br>60<br>0                     | PI<br>421<br>341<br>276<br>300<br>306<br>357<br>284<br>302<br>280<br>246<br>255<br>238<br>242                      |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14             | X2<br>0<br>1<br>-3<br>1<br>0<br>13<br>-2<br>0<br>-2<br>-1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X2D<br>-4<br>-1<br>0<br>0<br>5<br>7<br>3<br>8<br>8<br>0<br>14<br>4<br>1<br>7                         | X3<br>0<br>-1<br>0<br>1<br>1<br>1<br>-2<br>1<br>0<br>0<br>0<br>-2<br>0 | 1 | X3D<br>4<br>0<br>6<br>3<br>5<br>8<br>-1<br>2<br>-7<br>1<br>2<br>-3<br>-1<br>6 | TIME 263 249 222 249 247 252 227 2365 244 235 228 238 224 | 1TGL<br>150<br>90<br>45<br>47<br>71<br>50<br>60<br>0                           | PI<br>421<br>341<br>276<br>300<br>306<br>357<br>284<br>302<br>280<br>246<br>255<br>238<br>242<br>237               |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15          | X2<br>0<br>1<br>-3<br>1<br>0<br>13<br>-2<br>0<br>-2<br>-1<br>2<br>0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X2D<br>-4<br>-1<br>0<br>0<br>5<br>7<br>3<br>8<br>8<br>0<br>14<br>4<br>1<br>7                         | X3<br>0<br>-1<br>0<br>1<br>1<br>1<br>2<br>1<br>0<br>0<br>0<br>0        | 1 | X3D<br>40<br>63<br>58<br>-12<br>-7<br>12<br>-3<br>-16                         | TIME 263 249 222 247 252 227 230 265 244 235 228 225      | 1TGL<br>150<br>90<br>45<br>47<br>71<br>50<br>60<br>0                           | PI<br>421<br>341<br>276<br>300<br>306<br>357<br>284<br>302<br>280<br>246<br>255<br>238<br>242<br>237<br>238        |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16       | X2<br>0<br>1<br>-3<br>1<br>0<br>13<br>-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-0<br>1-0<br>1-0<br>1-0<br>1-0<br>1-0<br>1-0<br>1-0<br>1-0<br>1 | X2D<br>-4<br>-1<br>0<br>0<br>5<br>7<br>3<br>8<br>8<br>0<br>14<br>4<br>1<br>7<br>7<br>-10             | X3<br>01<br>01<br>11<br>12<br>10<br>00<br>00<br>-2                     | 1 | X3D<br>406358<br>-12712<br>-712-31640                                         | TIME 263 249 222 249 247 252 227 230 265 224 225 229      | 1TGL<br>150<br>90<br>45<br>47<br>71<br>50<br>60<br>0                           | PI<br>421<br>341<br>276<br>300<br>306<br>357<br>284<br>302<br>280<br>246<br>255<br>238<br>2427<br>238<br>231       |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17    | X2<br>0<br>1<br>-3<br>1<br>0<br>13<br>-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-0<br>1-0<br>1-0<br>1-0<br>1-0<br>1-0<br>1-0<br>1-0<br>1-0<br>1 | X2D<br>-4<br>-1<br>0<br>0<br>5<br>7<br>3<br>8<br>8<br>0<br>14<br>4<br>1<br>7<br>-10<br>0             | X3<br>01<br>01<br>11<br>12<br>10<br>00<br>00<br>20<br>00<br>20         | 1 | X3D<br>406358<br>-127123-16403                                                | TIME 2639 2247 2527 2365 244 235 228 225 215              | 1TGL<br>150<br>90<br>45<br>45<br>47<br>71<br>50<br>60<br>0<br>0<br>0           | PI<br>421<br>341<br>276<br>306<br>357<br>280<br>246<br>255<br>242<br>237<br>238<br>231<br>230                      |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | X2<br>0<br>1<br>-3<br>1<br>0<br>13<br>-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-2<br>0<br>1-0<br>1-0<br>1-0<br>1-0<br>1-0<br>1-0<br>1-0<br>1-0<br>1-0<br>1 | X2D<br>-4<br>-1<br>0<br>0<br>5<br>7<br>3<br>8<br>8<br>0<br>14<br>4<br>1<br>7<br>-10<br>0<br>10<br>10 | X3<br>01<br>01<br>11<br>12<br>10<br>00<br>00<br>00<br>00<br>00         | 1 | X3D<br>406358-127123-16403-4                                                  | TIME 2649 2247 2527 2365 2445 228 2225 215 224            | 1TGL<br>150<br>90<br>45<br>45<br>47<br>71<br>50<br>60<br>0<br>0<br>0<br>0<br>0 | PI<br>421<br>341<br>276<br>306<br>357<br>284<br>302<br>246<br>255<br>238<br>242<br>237<br>238<br>231<br>230<br>242 |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17    | X2<br>0<br>1<br>-3<br>1<br>0<br>13<br>-2<br>0<br>-2<br>-1<br>2<br>0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X2D<br>-4<br>-1<br>0<br>0<br>5<br>7<br>3<br>8<br>8<br>0<br>14<br>4<br>1<br>7<br>-10<br>0             | X3<br>01<br>01<br>11<br>12<br>10<br>00<br>00<br>20<br>00<br>20         | 1 | X3D<br>406358<br>-127123-16403                                                | TIME 2639 2247 2527 2365 244 235 228 225 215              | 1TGL<br>150<br>90<br>45<br>45<br>47<br>71<br>50<br>60<br>0<br>0<br>0           | PI<br>421<br>341<br>276<br>306<br>357<br>280<br>246<br>255<br>242<br>237<br>238<br>231<br>230                      |

| EXPERIMENT TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20                                                              | X 2 6 0 3 8 3 0 2 1 1 2 2 1 5 0 3 2 1 0 1 | INITIAL X2D 12 -3 2 -16 8 1 2 0 1 8 3 7 6 1 4 10 2 0 4           | COND 1<br>X3<br>1<br>0<br>1<br>4<br>-1<br>0<br>-1<br>-1<br>-2<br>2<br>1<br>-1<br>0<br>-2<br>-2 | X3D<br>-4<br>0<br>1<br>0<br>-1<br>-1<br>4<br>12<br>0<br>-10<br>-1<br>2<br>0<br>0<br>-2<br>-5<br>0<br>-2<br>-3<br>-7 | 3 PRED<br>TIME<br>294<br>280<br>324<br>306<br>243<br>231<br>210<br>214<br>233<br>2217<br>213<br>231<br>231<br>231<br>231<br>231<br>231<br>231<br>231<br>231 | LENGTH<br>ITGL<br>45<br>60<br>60<br>60<br>42<br>11<br>00<br>00<br>00<br>24<br>12<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>0 | 0<br>P1<br>367<br>369<br>3653<br>239<br>2357<br>231<br>241<br>251<br>261<br>261<br>263<br>273<br>273<br>273<br>273<br>273<br>273<br>273<br>273<br>273<br>27 |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EXPERIME<br>TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | X                                         | INITIAL X2D 0 4 8 4 4 38 15 14 3 -4 10 20 12 0 -2 8 -16 2 1 10 0 | COND 1<br>X3<br>O<br>O<br>-7<br>-4<br>-1<br>7<br>-6<br>-4<br>1<br>-1<br>-5<br>O<br>O<br>2<br>1 | X3D<br>-36<br>-20<br>-38<br>-50<br>-40<br>-7<br>-16<br>-12<br>-16<br>-12<br>-2<br>-10<br>-10<br>-1                  | 1 PRED<br>TIME<br>277<br>304<br>242<br>250<br>221<br>236<br>238<br>241<br>248<br>228<br>238<br>258<br>237<br>231<br>241<br>224<br>221<br>217                | LENGTH<br>ITGL<br>210<br>0 0 8 3 24 30 30 11 15 27 15 6 0 0 0 0 0 5 12                                                                      | 20<br>PI<br>523<br>312<br>283<br>297<br>299<br>284<br>269<br>284<br>245<br>246<br>246<br>246<br>246<br>246<br>246<br>246<br>246<br>246<br>246               |

| EXPERIMETRIAL  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17                                                                        | ENT 2<br>X2<br>0<br>-1<br>4<br>-2<br>0<br>-1<br>-4<br>0<br>-1<br>-2<br>-1<br>0<br>-1<br>0                                        | INITIAL<br>X2D<br>22<br>-13<br>3<br>4<br>5<br>0<br>8<br>2<br>8<br>-1<br>-1<br>-3<br>2<br>-1 | COND<br>x3<br>-3<br>-1<br>-1<br>0<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>2 | 1 | SUBJ<br>X3D<br>-2<br>-2<br>-1<br>-1<br>0<br>-1<br>-1<br>-2<br>0<br>-2<br>0<br>-1<br>-1<br>0                                                                                                                                | 2 PREE<br>TIME<br>264<br>268<br>241<br>252<br>250<br>245<br>229<br>236<br>216<br>234<br>220<br>230<br>225<br>242<br>218<br>223 | D LENGTH<br>ITGL<br>60<br>60<br>45<br>30<br>48<br>90<br>48<br>44<br>0<br>0<br>0<br>0<br>0<br>0 | 20<br>PI<br>352<br>347<br>295<br>3046<br>287<br>228<br>228<br>228<br>2248<br>2248<br>226                   |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 18<br>19                                                                                                                        | 0<br>0                                                                                                                           | 0 2                                                                                         | 0                                                                         |   | -2<br>0                                                                                                                                                                                                                    | 218<br>234                                                                                                                     | 0<br>0                                                                                         | 220<br>236                                                                                                 |
| 20                                                                                                                              | 1                                                                                                                                | 3                                                                                           | 1                                                                         |   | 1                                                                                                                                                                                                                          | 221                                                                                                                            | õ                                                                                              | 228                                                                                                        |
| EXPERIM<br>TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | ENT 2<br>X2<br>0-6<br>-21<br>-10<br>10<br>10<br>-10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | INITIAL X2D 6 0 1 2 6 0 3 5 6 -2 10 3 0 -4 2 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0          | C X 3 0 0 1 0 1 3 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0                       | 1 | SUBJ<br>X3D<br>-6<br>0<br>-2<br>-1<br>-7<br>0<br>-1<br>-1<br>-1<br>-2<br>-1<br>-2<br>-2<br>0<br>-2<br>-1<br>-2<br>-1<br>-2<br>-2<br>-2<br>-1<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2 | 3 PRESTIME 295 269 281 241 254 254 215 228 231 226 228 229 220 224 230 211 213 218 217                                         | D LENGTH ITGL 60 45 0 0 0 0 0 2 36 24 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                    | 20<br>PI<br>371<br>314<br>297<br>288<br>263<br>267<br>218<br>226<br>231<br>226<br>238<br>215<br>219<br>219 |

| EXPERIM                                            | MENT 2                                                                       | INITIAL                                                                                               | COND                                                                               | 2 SUBJ                                                                          | 1 PRE                                                                    | D LENGTH                                                                                         | 0                                                                                                            |
|----------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| TRIAL                                              | X2                                                                           | X2D                                                                                                   | Х3                                                                                 | X3D                                                                             | TIME                                                                     | ITGL                                                                                             | ۽ ۾                                                                                                          |
| 1                                                  | 0                                                                            | 0                                                                                                     | 0                                                                                  | ··· 2                                                                           | 204                                                                      | 150                                                                                              | 356                                                                                                          |
| 2                                                  | 0                                                                            | <del></del> 2                                                                                         | 6                                                                                  | -24                                                                             | 235                                                                      | 240                                                                                              | 502                                                                                                          |
| 3                                                  | 4                                                                            | <del>-</del> 5                                                                                        | 4                                                                                  | -4                                                                              | 240                                                                      | 90                                                                                               | 343                                                                                                          |
| 4                                                  | <del></del> 6                                                                | 12                                                                                                    | 0                                                                                  | <del></del> 5                                                                   | 237                                                                      | 15                                                                                               | 271                                                                                                          |
| 5                                                  | <del>-</del> 5                                                               | 32                                                                                                    | 0                                                                                  | <del>-</del> 56                                                                 | 198                                                                      | 12                                                                                               | 299                                                                                                          |
| 6                                                  | 1                                                                            | 22                                                                                                    | 3                                                                                  | <b>~9</b>                                                                       | 212                                                                      | Ü                                                                                                | 246                                                                                                          |
| 7                                                  | -16                                                                          | 36                                                                                                    | -2                                                                                 | -1                                                                              | 190                                                                      | 6                                                                                                | 241                                                                                                          |
| 8                                                  | 2                                                                            | 4                                                                                                     | -1                                                                                 | ၁                                                                               | 220                                                                      | 0                                                                                                | 228                                                                                                          |
| 9                                                  | 3                                                                            | 6                                                                                                     | 0                                                                                  | 8                                                                               | 245                                                                      | 78                                                                                               | 352                                                                                                          |
| 10                                                 | <b>-</b> 16                                                                  | 15                                                                                                    | 8                                                                                  | -24                                                                             | 179                                                                      | 39                                                                                               | 268                                                                                                          |
| 11                                                 | -2                                                                           | 12                                                                                                    | O .                                                                                | 2                                                                               | 230                                                                      | 0                                                                                                | 244                                                                                                          |
| 12                                                 | 1                                                                            | -12                                                                                                   | 2                                                                                  | 1                                                                               | 240                                                                      | 15                                                                                               | 271                                                                                                          |
| 13                                                 | 0                                                                            | 1                                                                                                     | 0                                                                                  | 5                                                                               | 218                                                                      | 0                                                                                                | 224                                                                                                          |
| 14                                                 | 0                                                                            | -1                                                                                                    | 1                                                                                  | 1                                                                               | 23C                                                                      | 3                                                                                                | 237                                                                                                          |
| 15                                                 | 2                                                                            | 4                                                                                                     | 0                                                                                  | <del>-</del> 5                                                                  | 219                                                                      | O                                                                                                | 231                                                                                                          |
| 16                                                 | -1                                                                           | 1                                                                                                     | 1                                                                                  | 2                                                                               | 214                                                                      | 0                                                                                                | 219                                                                                                          |
| 17                                                 | 0                                                                            | 2                                                                                                     | 0                                                                                  | -2                                                                              | 216                                                                      | 0                                                                                                | 220                                                                                                          |
| 18                                                 | 0                                                                            | -1                                                                                                    | 0                                                                                  | -2                                                                              | 206                                                                      | Ö                                                                                                | 209                                                                                                          |
| 19                                                 | 1                                                                            | 9                                                                                                     | 0                                                                                  | -3                                                                              | 199                                                                      | 0                                                                                                | 213                                                                                                          |
| 20                                                 | 0                                                                            | <b>−</b> €                                                                                            | -2                                                                                 | -12                                                                             | 205                                                                      | S                                                                                                | 227                                                                                                          |
|                                                    |                                                                              |                                                                                                       |                                                                                    |                                                                                 |                                                                          |                                                                                                  |                                                                                                              |
|                                                    |                                                                              |                                                                                                       |                                                                                    |                                                                                 |                                                                          |                                                                                                  |                                                                                                              |
| EXPERIM                                            | MENT 2                                                                       | INITIAL                                                                                               | COND                                                                               | 2 SUBJ                                                                          | 2 PRE                                                                    | D LENGTH                                                                                         | ٥                                                                                                            |
| EXPERIM<br>TRIAL                                   |                                                                              | INITIAL<br>X2D                                                                                        |                                                                                    | 2 SUBJ<br>X3D                                                                   |                                                                          | D LENGTH                                                                                         | 0<br>PI                                                                                                      |
| TRIAL                                              | X2                                                                           | X2D                                                                                                   | X3                                                                                 | X3D                                                                             | TIME                                                                     | ITGL                                                                                             | ΡI                                                                                                           |
| TRIAL<br>1                                         | X2<br>0                                                                      | X2D<br><b>-</b> 5                                                                                     | ×3<br>-2                                                                           |                                                                                 | TIME<br>241                                                              | ITGL<br>15                                                                                       | PI<br>266                                                                                                    |
| TRIAL                                              | X2                                                                           | X2D                                                                                                   | X3                                                                                 | X3D<br>-2                                                                       | TIME                                                                     | ITGL                                                                                             | PI<br>266<br>298                                                                                             |
| TRIAL<br>1<br>2                                    | X2<br>0<br>8                                                                 | X2D<br>-5<br>-16                                                                                      | ×3<br>-2<br>0                                                                      | X3D<br>-2<br>-4                                                                 | TIME<br>241<br>245                                                       | 1TGL<br>15<br>30                                                                                 | PI<br>266                                                                                                    |
| TRIAL<br>1<br>2<br>3                               | X2<br>0<br>8<br>4                                                            | X2D<br>-5<br>-16<br>3                                                                                 | ×3<br>-2<br>0<br>2                                                                 | X3D<br>-2<br>-4<br>-1                                                           | TIME<br>241<br>245<br>238                                                | ITGL<br>15<br>30<br>0                                                                            | PI<br>266<br>298<br>249                                                                                      |
| TRIAL<br>1<br>2<br>3<br>4                          | X2<br>0<br>8<br>4<br>-3                                                      | X2D<br>-5<br>-16<br>3<br>-2                                                                           | ×3<br>-2<br>0<br>2                                                                 | X3D<br>-2<br>-4<br>-1<br>-7                                                     | TIME<br>241<br>246<br>238<br>221                                         | 1TGL<br>15<br>30<br>0<br>15                                                                      | PI<br>266<br>298<br>249<br>249                                                                               |
| TRIAL<br>1<br>2<br>3<br>4<br>5                     | X2<br>0<br>8<br>4<br>-3<br>-2                                                | X2D<br>-5<br>-16<br>3<br>-2<br>-1                                                                     | X3<br>-2<br>0<br>2<br>1                                                            | X3D<br>-2<br>-4<br>-1<br>-7<br>-4                                               | TIME<br>241<br>246<br>238<br>221<br>200                                  | 1TGL<br>15<br>30<br>0<br>15<br>78                                                                | PI<br>266<br>298<br>249<br>249<br>286                                                                        |
| TRIAL 1 2 3 4 5 6 7 8                              | X2<br>0<br>8<br>4<br>-3<br>-2<br>0                                           | X2D<br>-5<br>-16<br>3<br>-2<br>-1<br>8<br>8                                                           | X3<br>-2<br>0<br>2<br>1<br>0                                                       | X3D<br>-2<br>-4<br>-1<br>-7<br>-4<br>8                                          | TIME<br>241<br>246<br>238<br>221<br>200<br>226<br>211<br>215             | 1TGL<br>15<br>30<br>0<br>15<br>78<br>30                                                          | PI<br>266<br>298<br>249<br>249<br>286<br>272                                                                 |
| TRIAL 1 2 3 4 5 6 7 8 9                            | X2<br>0<br>8<br>4<br>-3<br>-2<br>0<br>2<br>-1<br>0                           | X2D<br>-5<br>-16<br>3<br>-2<br>-1<br>8<br>8                                                           | X3<br>-2<br>0<br>2<br>1<br>0<br>-2<br>1<br>0                                       | X3D -2 -4 -1 -7 -4 -8 -2 -1 -4                                                  | TIME 241 246 238 221 200 226 211 215 215                                 | 1TGL<br>15<br>30<br>0<br>15<br>78<br>30<br>35                                                    | PI<br>266<br>298<br>249<br>249<br>286<br>272<br>261<br>271<br>248                                            |
| TRIAL 1 2 3 4 5 6 7 8 9 10                         | X2<br>0<br>8<br>4<br>-3<br>-2<br>0<br>2<br>-1<br>0<br>2                      | X2D<br>-5<br>-16<br>3<br>-2<br>-1<br>8<br>8<br>0<br>3                                                 | X3<br>-2<br>0<br>2<br>1<br>0<br>-2<br>1<br>0<br>0                                  | X3D -2 -4 -1 -7 -4 -8 -2 -1 -4 -6                                               | TIME 241 246 238 221 200 226 211 215 215                                 | 1TGL<br>15<br>30<br>0<br>15<br>78<br>30<br>35<br>54<br>26                                        | PI<br>266<br>298<br>249<br>249<br>286<br>272<br>261<br>271<br>248<br>235                                     |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11                      | X2<br>0<br>8<br>4<br>-3<br>-2<br>0<br>2<br>-1<br>0<br>2<br>4                 | X2D<br>-5<br>-16<br>3<br>-2<br>-1<br>8<br>8<br>0<br>3<br>10                                           | X3<br>-2<br>0<br>2<br>1<br>0<br>0<br>-2<br>1<br>0<br>0                             | X3D<br>-2<br>-4<br>-1<br>-7<br>-4<br>-8<br>-2<br>-1<br>-4<br>-6                 | TIME 241 246 238 221 200 226 211 215 215 205                             | 1TGL<br>15<br>30<br>0<br>15<br>78<br>30<br>35<br>54<br>26<br>0<br>21                             | PI<br>266<br>298<br>249<br>249<br>286<br>272<br>261<br>271<br>248<br>235<br>243                              |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12                   | X2<br>0<br>8<br>4<br>-3<br>-2<br>0<br>2<br>-1<br>0<br>2<br>4<br>-1           | X2D<br>-5<br>-16<br>3<br>-2<br>-1<br>8<br>8<br>0<br>3<br>10<br>10<br>8                                | X3<br>-2<br>0<br>2<br>1<br>0<br>0<br>-2<br>1<br>0<br>0<br>0<br>-2                  | X3D<br>-2<br>-4<br>-1<br>-7<br>-4<br>8<br>-2<br>-1<br>-4<br>-6<br>0<br>-4       | TIME 241 246 238 221 200 226 211 215 215 205 221                         | 1TGL<br>15<br>30<br>0<br>15<br>78<br>30<br>35<br>54<br>26<br>0<br>21<br>18                       | PI<br>266<br>298<br>249<br>286<br>272<br>261<br>271<br>248<br>235<br>243<br>253                              |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13                | X2<br>0<br>8<br>4<br>-3<br>-2<br>0<br>2<br>-1<br>0<br>2<br>4<br>-1<br>1      | X2D<br>-5<br>-16<br>3<br>-2<br>-1<br>8<br>8<br>0<br>3<br>10<br>10<br>8<br>4                           | X3 -2 0 2 1 0 0 0 -2 1 0 0 0 -1 1                                                  | X3D<br>-2<br>-4<br>-1<br>-7<br>-4<br>8<br>-2<br>-1<br>-4<br>-6<br>0<br>-4<br>-6 | TIME 241 246 238 221 200 226 211 215 215 215 205 221 207                 | 1TGL<br>15<br>30<br>0<br>15<br>78<br>30<br>35<br>54<br>26<br>0<br>21<br>18<br>17                 | PI<br>266<br>298<br>249<br>286<br>272<br>261<br>271<br>248<br>235<br>243<br>253<br>235                       |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14             | X2<br>0<br>8<br>4<br>-3<br>-2<br>0<br>2<br>-1<br>0<br>2<br>4<br>-1<br>1      | X2D<br>-5<br>-16<br>3<br>-2<br>-1<br>8<br>0<br>3<br>10<br>10<br>8<br>4<br>5                           | X3 -2 0 2 1 0 0 0 -2 1 0 0 0 -1 1 1 1                                              | X3D<br>-2<br>-4<br>-1<br>-7<br>-4<br>8<br>-2<br>-1<br>-4<br>-6<br>-4<br>-6<br>5 | TIME 241 246 238 221 200 226 211 215 215 215 205 221 207 212             | 1TGL<br>15<br>30<br>0<br>15<br>78<br>30<br>35<br>54<br>26<br>0<br>21<br>18<br>17                 | PI<br>266<br>298<br>249<br>286<br>272<br>261<br>271<br>248<br>253<br>253<br>235<br>238                       |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15          | X2<br>0<br>8<br>4<br>-3<br>-2<br>0<br>2<br>-1<br>0<br>2<br>4<br>-1<br>1      | X2D<br>-5<br>-16<br>3<br>-2<br>-1<br>8<br>0<br>3<br>10<br>10<br>8<br>4<br>5                           | X3 -2 0 2 1 0 0 0 -2 1 0 0 0 C -1 1 1 1 -1                                         | X3D -2 -4 -1 -7 -4 -8 -2 -1 -4 -6 -4 -6 5 0                                     | TIME 241 246 238 221 200 226 211 215 215 205 221 207 212 215             | 1TGL<br>15<br>30<br>0<br>15<br>78<br>30<br>35<br>54<br>26<br>0<br>21<br>18<br>17<br>12<br>0      | PI<br>266<br>298<br>249<br>286<br>272<br>261<br>271<br>248<br>253<br>253<br>238<br>228                       |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16       | X2<br>0<br>8<br>4<br>-3<br>-2<br>0<br>2<br>-1<br>0<br>2<br>4<br>-1<br>1<br>1 | X2D<br>-5<br>-16<br>3<br>-2<br>-1<br>8<br>8<br>0<br>3<br>10<br>10<br>8<br>4<br>5<br>10<br>6           | X3<br>-2<br>0<br>2<br>1<br>0<br>0<br>-2<br>1<br>0<br>0<br>0<br>-1<br>1<br>-1<br>-2 | X3D -2 -4 -1 -7 -4 -8 -2 -1 -4 -6 0 -4 -6 0 -2                                  | TIME 241 246 238 221 200 226 211 215 215 205 221 207 212 215 206         | 1TGL<br>15<br>30<br>0<br>15<br>78<br>30<br>35<br>54<br>26<br>0<br>21<br>18<br>17<br>12<br>0      | PI<br>268<br>249<br>249<br>286<br>272<br>261<br>271<br>248<br>253<br>253<br>253<br>228<br>220                |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17    | X2<br>0 8<br>4 -3 -2<br>0 2 -1<br>1 1 1 2 0                                  | X2D<br>-5<br>-16<br>3<br>-2<br>-1<br>8<br>8<br>0<br>3<br>10<br>10<br>8<br>4<br>5                      | X3 -2 0 2 1 0 0 0 -2 1 0 0 0 -1 1 -1 -2 1                                          | X3D -2 -4 -1 -7 -4 8 -2 -1 -4 -6 0 -4 -6 0 -2 -1                                | TIME 241 246 238 221 200 226 211 215 215 205 221 207 212 215 206 212     | 1TGL<br>15<br>30<br>0<br>15<br>78<br>30<br>35<br>54<br>26<br>0<br>21<br>18<br>17<br>12<br>0      | PI<br>268<br>249<br>249<br>286<br>272<br>261<br>271<br>248<br>235<br>235<br>238<br>220<br>213                |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | X2<br>0 8<br>4 -3<br>-2 0 2<br>-1 0 2<br>4 -1 1 1 2 0 2                      | X2D<br>-5<br>-16<br>3<br>-2<br>-1<br>8<br>8<br>0<br>3<br>10<br>10<br>8<br>4<br>5<br>10<br>6<br>0<br>1 | X3 -2 0 2 1 0 0 0 -2 1 0 0 0 0 -1 1 1 -1 2 1 0                                     | X3D -2 -4 -1 -7 -4 -2 -1 -4 -6 0 -4 -6 0 -2 -1 -1                               | TIME 241 246 238 221 200 226 211 215 215 205 221 207 212 215 206 212 211 | 1TGL<br>15<br>30<br>0<br>15<br>78<br>30<br>35<br>54<br>26<br>0<br>21<br>18<br>17<br>12<br>0<br>0 | PI<br>268<br>249<br>249<br>286<br>272<br>261<br>271<br>248<br>235<br>243<br>253<br>228<br>228<br>2213<br>216 |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17    | X2<br>0 8<br>4 -3 -2<br>0 2 -1<br>1 1 1 2 0                                  | X2D<br>-5<br>-16<br>3<br>-2<br>-1<br>8<br>8<br>0<br>3<br>10<br>10<br>8<br>4<br>5                      | X3 -2 0 2 1 0 0 0 -2 1 0 0 0 -1 1 -1 -2 1                                          | X3D -2 -4 -1 -7 -4 8 -2 -1 -4 -6 0 -4 -6 0 -2 -1                                | TIME 241 246 238 221 200 226 211 215 215 205 221 207 212 215 206 212     | 1TGL<br>15<br>30<br>0<br>15<br>78<br>30<br>35<br>54<br>26<br>0<br>21<br>18<br>17<br>12<br>0      | PI<br>268<br>249<br>249<br>286<br>272<br>261<br>271<br>248<br>235<br>235<br>238<br>220<br>213                |

| EXPERIMETRIAL  1 2 3 4 5 6 7 9 10 11 12 13 14 15 15 17 18 19 20   | 2 X 8 4 C 9 O 1 O 2 3 1 3 1 1 1 1 1 3 2 2 | INITIAL X2D 7 12 -16 -7 -10 2 1 7 4 -5 4 -1 6 1 6 2 0 -2 0 1                                                              | COND<br>X3<br>2<br>0<br>-1<br>0<br>0<br>1<br>2<br>-1<br>-1<br>2<br>1<br>2<br>0<br>0<br>0 | 2 | SUBJ<br>X3D<br>-2<br>6<br>1<br>1<br>1<br>-4<br>2<br>-4<br>-7<br>-7<br>-7<br>-1<br>-1<br>0<br>0<br>0<br>4<br>0<br>-2                                       | 3 PRI<br>TIME<br>266<br>307<br>266<br>249<br>266<br>232<br>214<br>233<br>234<br>221<br>214<br>229<br>208<br>216<br>202<br>210<br>204       | ED LENGTH ITGL 15 30 15 06 98 20 20 35 00 08 90 3       | O PI<br>303<br>369<br>270<br>287<br>287<br>287<br>287<br>287<br>287<br>287<br>287<br>287<br>287 |
|-------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| EXPERIMETRIAL  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | T 2                                       | INITIAL<br>X2D<br>-18<br>-4<br>16<br>26<br>24<br>8<br>24<br>14<br>-4<br>-4<br>-4<br>26<br>3<br>1<br>2<br>1<br>2<br>1<br>8 | COND<br>X3<br>-5<br>0<br>0<br>0<br>1<br>-1<br>-2<br>0<br>14<br>0<br>0<br>1<br>0<br>1     | 2 | SUBJ<br>X3D<br>-28<br>-2<br>-3<br>-20<br>-20<br>-2<br>-1<br>-1<br>-1<br>-32<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2 | 1 PR<br>TIME<br>244<br>245<br>248<br>250<br>167<br>225<br>214<br>225<br>240<br>186<br>220<br>187<br>211<br>228<br>227<br>225<br>195<br>202 | ED LENGTH ITGL 60 0 0 14 12 0 30 2 33 0 8 2 0 0 0 2 5 0 | 20 PI 0 4 2 7 5 7 2 2 7 5 7 2 2 2 4 4 5 5 5 3 2 2 2 3 3 3 4 2 2 2 2 2 2 2 2 2 9 9               |

| EXPERIMETRIAL  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20     | ENT 2<br>X2<br>-4<br>2 -1<br>1 -2<br>-2 -2<br>-1 -3<br>0 2<br>0               | INITIAL<br>X2D<br>26<br>22<br>4<br>4<br>-4<br>-5<br>4<br>-2<br>1<br>5<br>1<br>-4<br>2<br>3<br>-1<br>0 | COND<br>X3<br>-4<br>-2<br>1<br>0<br>1<br>-1<br>0<br>0<br>0<br>-1<br>0<br>0<br>0<br>1<br>1<br>1 | 2 | SUBJ<br>X3D<br>-1<br>-4<br>-1<br>0<br>-2<br>-1<br>-1<br>-2<br>-1<br>0<br>0<br>-1<br>0<br>0 | 2 PR<br>TIME<br>271<br>248<br>215<br>220<br>207<br>211<br>227<br>212<br>195<br>202<br>225<br>211<br>202<br>209<br>199<br>203<br>199 | ED LENGTH<br>ITGL<br>030<br>30<br>15<br>836<br>27<br>17<br>80<br>36<br>03<br>02<br>09<br>50 | 20<br>PI<br>303<br>307<br>251<br>241<br>216<br>267<br>241<br>235<br>240<br>215<br>202<br>211<br>224<br>236<br>212<br>212<br>212<br>212<br>212<br>212<br>202 |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EXPERIMITED TRIAL  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | ENT 2<br>X2<br>-3<br>-3<br>-0<br>0<br>-1<br>-1<br>0<br>0<br>2<br>3<br>0<br>-2 | INITIAL X2D -4 4 -16 -4 0 1 1 -2 5 2 -7 1 -2 2 1 4 0 -1                                               | COND<br>X3<br>0-1-1000000000000000000000000000000000                                           | 2 | SUBJ<br>X3D<br>-4<br>-3<br>-3<br>-1<br>-1<br>0<br>1<br>-1<br>-1<br>-1<br>-2<br>-2<br>-1    | 3 PF<br>TIME<br>246<br>317<br>247<br>249<br>213<br>2205<br>2190<br>2101<br>200<br>2101<br>200<br>2101<br>200<br>200<br>200<br>200   | RED LENGTH ITGL 30 30 30 00 00 00 00 00 00 00 00 00 00                                      | 20 PI<br>287<br>354<br>273<br>250<br>253<br>214<br>222<br>216<br>205<br>211<br>223<br>211<br>225<br>211                                                     |

| EXPERIV                                                                                            | ENT 2                                                                          | INITIAL                                                                                      | COND                                                                                    | 3 | SUBJ                                                                             | 1 PR                                                                                     | ED LENGTH                                                                                               | 0                                                                                   |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| TRIAL                                                                                              | X 2                                                                            | X2D                                                                                          | X3                                                                                      |   | X3D                                                                              | TIME                                                                                     | ITGL                                                                                                    | ΡI                                                                                  |
| 1                                                                                                  | C                                                                              | 0                                                                                            | <b></b> 4                                                                               |   | 2                                                                                | 228                                                                                      | 15                                                                                                      | 248                                                                                 |
| 2                                                                                                  | <b>)</b>                                                                       | <del></del> 7                                                                                | -16                                                                                     |   | 8                                                                                | 322                                                                                      | O                                                                                                       | 348                                                                                 |
| 3                                                                                                  | <del></del> 6                                                                  | 6                                                                                            | 9                                                                                       |   | -38                                                                              | 256                                                                                      | 15                                                                                                      | 320                                                                                 |
| 4                                                                                                  | ··· 7                                                                          | 4                                                                                            | <b>3</b>                                                                                |   | 30                                                                               | 240                                                                                      | 0                                                                                                       | 284                                                                                 |
| 5                                                                                                  | 4                                                                              | 0                                                                                            | <b>∞</b> 7                                                                              |   | -24                                                                              | 257                                                                                      | 45                                                                                                      | 342                                                                                 |
| 6                                                                                                  | 0                                                                              | 0                                                                                            | 1                                                                                       |   | -18                                                                              | 294                                                                                      | 5                                                                                                       | 310                                                                                 |
| 7                                                                                                  | -16                                                                            | 22                                                                                           | 16                                                                                      |   | -48                                                                              | 198                                                                                      | 5                                                                                                       | 284                                                                                 |
| 8                                                                                                  | 3                                                                              | 12                                                                                           | 4                                                                                       |   | -12                                                                              | 229                                                                                      | 42                                                                                                      | 301                                                                                 |
| 9                                                                                                  | -4                                                                             | 8                                                                                            | 12                                                                                      |   | -26                                                                              | 221                                                                                      | 3                                                                                                       | 263                                                                                 |
| 10                                                                                                 | 0                                                                              | 10                                                                                           | 8                                                                                       |   | -16                                                                              | 238                                                                                      | 66                                                                                                      | 333                                                                                 |
| 11                                                                                                 | <del></del> 8                                                                  | 12                                                                                           | 8                                                                                       |   | -24                                                                              | 216                                                                                      | 5                                                                                                       | 262                                                                                 |
| 12                                                                                                 | -7                                                                             | 14                                                                                           | -1                                                                                      |   | -20                                                                              | 217                                                                                      | 9                                                                                                       | 264                                                                                 |
| 13                                                                                                 | 0                                                                              | 4                                                                                            | -2                                                                                      |   | <del>-</del> 3                                                                   | 243                                                                                      | 0                                                                                                       | 253                                                                                 |
| 14                                                                                                 | 0                                                                              | 5                                                                                            | <b> 1</b>                                                                               |   | <b>-</b> 5                                                                       | 223                                                                                      | 26                                                                                                      | 260                                                                                 |
| 15                                                                                                 | 4                                                                              | 20                                                                                           | 1                                                                                       |   | 1                                                                                | 248                                                                                      | 0                                                                                                       | 278                                                                                 |
| 16                                                                                                 | 0                                                                              | 10                                                                                           | 1                                                                                       |   | -12                                                                              | 243                                                                                      | 3                                                                                                       | 268                                                                                 |
| 17                                                                                                 | 1                                                                              | <del>-</del> 3                                                                               | 1                                                                                       |   | 10                                                                               | 236                                                                                      | 15                                                                                                      | 266                                                                                 |
| 18                                                                                                 | 2                                                                              | 10                                                                                           | 1                                                                                       |   | 1                                                                                | 244                                                                                      | 18                                                                                                      | 278                                                                                 |
| 19                                                                                                 | . 0                                                                            | 20                                                                                           | 0                                                                                       |   | <del></del> 2                                                                    | 239                                                                                      | 0                                                                                                       | 261                                                                                 |
| 20                                                                                                 | C                                                                              | 8                                                                                            | 0                                                                                       |   | 0                                                                                | 230                                                                                      | 0                                                                                                       | 238                                                                                 |
| -                                                                                                  |                                                                                |                                                                                              |                                                                                         |   |                                                                                  |                                                                                          |                                                                                                         |                                                                                     |
|                                                                                                    |                                                                                |                                                                                              |                                                                                         | _ |                                                                                  |                                                                                          |                                                                                                         | _                                                                                   |
| EXPERIA                                                                                            |                                                                                | INITIAL                                                                                      |                                                                                         | 3 | SUBJ                                                                             |                                                                                          | ED LENGTH                                                                                               | 0                                                                                   |
| TRIAL                                                                                              | X 2                                                                            | X2D                                                                                          | Х3                                                                                      | 3 | X3D                                                                              | TIME                                                                                     | ITGL                                                                                                    | ΡI                                                                                  |
| TRIAL                                                                                              | ×2<br><b>~</b> 6                                                               | X2D<br>20                                                                                    | ×3<br>-4                                                                                | 3 | X3D<br>6                                                                         | TIME<br>263                                                                              | ITGL<br>90                                                                                              | PI<br>404                                                                           |
| TRIAL<br>1<br>2                                                                                    | X2<br><b>-</b> 6<br>0                                                          | X2D<br>20<br><del>-</del> 4                                                                  | X3<br>-4<br>-2                                                                          | 3 | X3D<br>6<br>-2                                                                   | 71ME<br>263<br>287                                                                       | ITGL<br>90<br>75                                                                                        | PI<br>404<br>371                                                                    |
| TRIAL<br>1<br>2<br>3                                                                               | X2<br>-6<br>0                                                                  | X2D<br>20<br><del>-4</del><br>10                                                             | X3<br>-4<br>-2<br>0                                                                     | 3 | X3D<br>6<br>-2<br>-8                                                             | 71ME<br>263<br>287<br>292                                                                | 1TGL<br>90<br>75<br>30                                                                                  | PI<br>404<br>371<br>340                                                             |
| TRIAL<br>1<br>2<br>3<br>4                                                                          | X2<br>-6<br>0<br>0                                                             | X2D<br>20<br>-4<br>10<br>16                                                                  | ×3<br>-4<br>-2<br>0                                                                     | 3 | X3D<br>6<br>-2<br>-8<br>0                                                        | TIME<br>263<br>287<br>292<br>279                                                         | ITGL<br>90<br>75<br>30<br>15                                                                            | PI<br>404<br>371<br>340<br>315                                                      |
| TRIAL<br>1<br>2<br>3<br>4<br>5                                                                     | X2<br>-6<br>0<br>0<br>2                                                        | X2D<br>20<br>-4<br>10<br>16<br>10                                                            | X3<br>-4<br>-2<br>0<br>1                                                                | 3 | X3D<br>6<br>-2<br>-8<br>0<br>6                                                   | TIME<br>263<br>287<br>292<br>279<br>289                                                  | 1TGL<br>90<br>75<br>30<br>15<br>39                                                                      | PI<br>404<br>371<br>340<br>315<br>344                                               |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6                                                                | X2<br>-6<br>0<br>2<br>0                                                        | X2D<br>20<br>-4<br>10<br>16<br>10<br>-18                                                     | X3<br>-4<br>-2<br>0<br>1<br>0                                                           | 3 | X3D<br>6<br>-2<br>-8<br>0<br>6<br>-5                                             | TIME<br>263<br>287<br>292<br>279<br>289<br>251                                           | 1TGL<br>90<br>75<br>30<br>15<br>39<br>72                                                                | PI<br>404<br>371<br>340<br>315<br>344<br>352                                        |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                           | X2<br>-6<br>0<br>2<br>0<br>10                                                  | X2D<br>20<br>-4<br>10<br>16<br>10<br>-18                                                     | X3<br>-4<br>-2<br>0<br>1<br>0                                                           | 3 | X3D<br>6<br>-2<br>-8<br>0<br>6<br>-5<br>-1                                       | TIME<br>263<br>287<br>292<br>279<br>289<br>251<br>231                                    | 1TGL<br>90<br>75<br>30<br>15<br>39<br>72<br>18                                                          | PI<br>404<br>371<br>340<br>315<br>344<br>352<br>262                                 |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                      | X2<br>-6<br>0<br>2<br>0<br>10<br>0                                             | X2D<br>20<br>-4<br>10<br>16<br>10<br>-18<br>10<br>6                                          | X3<br>-4<br>-2<br>0<br>1<br>0<br>-1<br>-1                                               | 3 | X3D<br>6<br>-2<br>-8<br>0<br>6<br>-5<br>-1<br>0                                  | TIME<br>263<br>287<br>292<br>279<br>289<br>251<br>231<br>245                             | 1TGL<br>90<br>75<br>30<br>15<br>39<br>72<br>18<br>4                                                     | PI<br>404<br>371<br>340<br>315<br>344<br>352<br>262<br>256                          |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                      | ×2<br>-6<br>0<br>0<br>2<br>0<br>10<br>0<br>-1<br>4                             | X2D<br>20<br>-4<br>10<br>16<br>10<br>-18<br>10<br>6                                          | X3<br>-4<br>-2<br>0<br>1<br>0<br>-1<br>-1                                               | 3 | X3D<br>6<br>-2<br>-8<br>0<br>6<br>-5<br>-1<br>0                                  | TIME<br>263<br>287<br>292<br>279<br>289<br>251<br>231<br>245<br>250                      | 1TGL<br>90<br>75<br>30<br>15<br>39<br>72<br>18<br>4                                                     | PI<br>404<br>371<br>340<br>315<br>344<br>352<br>262<br>256<br>278                   |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                 | X2<br>-6<br>0<br>0<br>2<br>0<br>10<br>0<br>-1<br>4                             | X2D<br>20<br>-4<br>10<br>16<br>10<br>-18<br>10<br>6<br>5                                     | X3 -4 -2 0 1 0 -1 -1 0 2                                                                | 3 | X3D<br>6<br>-2<br>-8<br>0<br>6<br>-5<br>-1<br>0<br>1                             | TIME<br>263<br>287<br>292<br>279<br>289<br>251<br>231<br>245<br>250<br>225               | 1TGL<br>90<br>75<br>30<br>15<br>39<br>72<br>18<br>4<br>16<br>33                                         | PI<br>404<br>371<br>340<br>315<br>344<br>352<br>262<br>256<br>278<br>261            |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                           | X2<br>-6<br>0<br>2<br>0<br>10<br>0<br>-1<br>4<br>1                             | X2D<br>20<br>-4<br>10<br>16<br>10<br>-18<br>10<br>6<br>5<br>-1                               | X3<br>-4<br>-2<br>0<br>1<br>0<br>-1<br>-1<br>0<br>2                                     | 3 | X3D<br>6<br>-2<br>-8<br>0<br>6<br>-5<br>-1<br>0<br>1                             | TIME<br>263<br>287<br>292<br>279<br>289<br>251<br>231<br>245<br>250<br>225<br>234        | 1TGL<br>90<br>75<br>30<br>15<br>39<br>72<br>18<br>4<br>16<br>33<br>21                                   | PI<br>404<br>371<br>340<br>315<br>344<br>352<br>262<br>278<br>261<br>268            |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                               | X2<br>-6<br>0<br>0<br>2<br>0<br>10<br>0<br>-1<br>4<br>1                        | X2D<br>20<br>-4<br>10<br>16<br>10<br>-18<br>10<br>6<br>5<br>-1<br>8                          | X3<br>-4<br>-2<br>0<br>1<br>0<br>0<br>-1<br>-1<br>0<br>0                                | 3 | X3D<br>6<br>-2<br>-8<br>0<br>6<br>-5<br>-1<br>0<br>1<br>0<br>-3<br>3             | TIME<br>263<br>287<br>292<br>279<br>289<br>251<br>231<br>245<br>250<br>225<br>234<br>229 | 1TGL<br>90<br>75<br>30<br>15<br>39<br>72<br>18<br>4<br>16<br>33<br>21<br>26                             | PI<br>404<br>371<br>345<br>344<br>352<br>262<br>278<br>261<br>268<br>261            |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13                                                                | X2<br>-6<br>0<br>0<br>2<br>0<br>10<br>0<br>-1<br>4<br>1                        | X2D<br>20<br>-4<br>10<br>16<br>10<br>-18<br>10<br>6<br>5<br>-1<br>8<br>5                     | X3<br>-4<br>-2<br>0<br>1<br>0<br>0<br>-1<br>-1<br>0<br>0<br>0                           | 3 | X3D<br>6<br>-2<br>-8<br>0<br>6<br>-5<br>-1<br>0<br>1<br>0<br>-3<br>3<br>-2       | TIME 263 287 292 279 289 251 231 245 250 225 234 229 243                                 | 1TGL<br>90<br>75<br>30<br>15<br>39<br>72<br>18<br>4<br>16<br>33<br>21<br>26<br>15                       | PI<br>404<br>371<br>345<br>344<br>352<br>266<br>278<br>268<br>261<br>266            |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14                                                             | X2<br>-6<br>0<br>0<br>2<br>0<br>10<br>0<br>-1<br>4<br>1<br>-1<br>1-2           | X2D<br>20<br>-4<br>10<br>16<br>10<br>-18<br>10<br>6<br>5<br>-1<br>8<br>5                     | X3<br>-4<br>-2<br>0<br>1<br>0<br>0<br>1<br>1<br>0<br>2<br>0<br>0<br>0                   | 3 | X3D<br>6<br>-2<br>-8<br>0<br>6<br>-5<br>-1<br>0<br>1<br>0<br>-3<br>3<br>-2<br>-5 | TIME 263 287 292 279 289 251 231 245 250 225 234 229 243 231                             | 1TGL<br>90<br>75<br>30<br>15<br>39<br>72<br>18<br>4<br>16<br>33<br>21<br>26<br>15<br>27                 | PI<br>404<br>371<br>345<br>344<br>352<br>256<br>278<br>261<br>266<br>270            |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15                                                          | X2<br>-6<br>0<br>0<br>2<br>0<br>10<br>0<br>-1<br>4<br>1<br>-1<br>1-2           | X2D<br>20<br>-4<br>10<br>16<br>10<br>-18<br>10<br>6<br>5<br>-1<br>8<br>5<br>4<br>7           | X3<br>-4<br>-2<br>0<br>1<br>0<br>0<br>-1<br>1<br>0<br>0<br>0<br>0<br>0<br>0             | 3 | X3D<br>62<br>-8<br>06<br>-5<br>-1<br>01<br>03<br>-3<br>-2<br>-5<br>2             | TIME 263 287 292 279 289 251 231 245 250 225 234 229 243 231 238                         | 1TGL<br>90<br>75<br>30<br>15<br>39<br>72<br>18<br>4<br>16<br>33<br>21<br>26<br>15<br>27<br>8            | PI<br>404<br>371<br>345<br>344<br>352<br>256<br>278<br>268<br>266<br>270<br>250     |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16                                                       | X2<br>-6<br>0<br>0<br>2<br>0<br>10<br>0<br>-1<br>4<br>1<br>-1<br>1<br>-2<br>-1 | X2D<br>20<br>-4<br>10<br>16<br>10<br>-18<br>10<br>6<br>5<br>-1<br>8<br>5<br>4<br>7<br>2      | X3<br>-4<br>-2<br>0<br>1<br>0<br>-1<br>-1<br>0<br>0<br>0<br>0<br>0<br>0                 | 3 | X3D<br>62<br>-8<br>06<br>-5<br>-1<br>01<br>03<br>-3<br>-5<br>22                  | TIME 263 287 292 279 289 251 231 245 250 225 234 229 243 231 238 231                     | 1TGL<br>90<br>75<br>30<br>15<br>39<br>72<br>18<br>4<br>16<br>33<br>21<br>26<br>15<br>27<br>8            | PI<br>4041<br>315<br>344<br>352<br>2568<br>2668<br>260<br>270<br>252<br>242         |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | X2<br>-6<br>0<br>0<br>2<br>0<br>10<br>0<br>-1<br>4<br>1<br>-1<br>1<br>-2<br>-1 | X2D<br>20<br>-4<br>10<br>16<br>10<br>-18<br>10<br>6<br>5<br>-1<br>8<br>5<br>4<br>7<br>2<br>1 | X3<br>-4<br>-2<br>0<br>1<br>0<br>0<br>-1<br>-1<br>0<br>2<br>0<br>0<br>0<br>0<br>-1<br>0 | 3 | X3D<br>62<br>-8<br>06<br>-5<br>-1<br>01<br>03<br>-2<br>-5<br>2<br>2<br>-3        | TIME 263 287 292 279 289 251 231 245 250 225 234 229 243 231 238 231 229                 | 1TGL<br>90<br>75<br>30<br>15<br>39<br>72<br>18<br>4<br>16<br>33<br>21<br>26<br>15<br>27<br>8<br>8       | PI<br>4071<br>315<br>315<br>326<br>257<br>268<br>261<br>260<br>270<br>2240          |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18                                                 | X2<br>-6<br>0<br>2<br>0<br>10<br>0<br>-1<br>4<br>1<br>-1<br>-2<br>-1<br>0<br>0 | X2D<br>20<br>-4<br>10<br>16<br>10<br>-18<br>10<br>65<br>-1<br>85<br>47<br>21<br>-2<br>0      | X3<br>-4<br>-2<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0    | 3 | X3D<br>62 -8 0 6 -5 1 0 1 0 3 3 -2 5 2 2 3 -4                                    | TIME 263 287 292 279 289 251 231 245 255 234 229 243 231 239 235                         | 1TGL<br>90<br>75<br>30<br>15<br>39<br>72<br>18<br>4<br>16<br>33<br>21<br>26<br>15<br>27<br>8<br>6<br>17 | PI<br>4041<br>315<br>3442<br>2568<br>2662<br>270<br>256<br>266<br>270<br>240<br>256 |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | X2<br>-6<br>0<br>0<br>2<br>0<br>10<br>0<br>-1<br>4<br>1<br>-1<br>1<br>-2<br>-1 | X2D<br>20<br>-4<br>10<br>16<br>10<br>-18<br>10<br>6<br>5<br>-1<br>8<br>5<br>4<br>7<br>2<br>1 | X3<br>-4<br>-2<br>0<br>1<br>0<br>0<br>-1<br>-1<br>0<br>2<br>0<br>0<br>0<br>0<br>-1<br>0 | 3 | X3D<br>62<br>-8<br>06<br>-5<br>-1<br>01<br>03<br>-2<br>-5<br>2<br>2<br>-3        | TIME 263 287 292 279 289 251 231 245 250 225 234 229 243 231 238 231 229                 | 1TGL<br>90<br>75<br>30<br>15<br>39<br>72<br>18<br>4<br>16<br>33<br>21<br>26<br>15<br>27<br>8<br>8       | PI<br>4071<br>315<br>315<br>326<br>257<br>268<br>261<br>260<br>270<br>2240          |

| EXPERIV                                            | IENT 2                                                                                       | INITIAL                                                                                                    | COND                                                                                             | 3 | SUBJ                                                                                                       | 3 PF                                                                                     | RED LENGTH                                    | 0                                                                                                           |
|----------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| TRIAL                                              | X 2                                                                                          | X2D                                                                                                        | Х3                                                                                               |   | X3D                                                                                                        | TIME                                                                                     | ITGL                                          | ΡI                                                                                                          |
| 1                                                  | 0                                                                                            | 0                                                                                                          | - 1                                                                                              |   | <del></del> 4                                                                                              | 298                                                                                      | 30                                            | 334                                                                                                         |
| 2                                                  | 0                                                                                            | -14                                                                                                        | 0                                                                                                |   | O                                                                                                          | 287                                                                                      | 15                                            | 316                                                                                                         |
| 3                                                  | <b></b> 2                                                                                    | 8                                                                                                          | 0                                                                                                |   | <del></del> 5                                                                                              | 271                                                                                      | 30                                            | 318                                                                                                         |
| 4                                                  | 1                                                                                            | ···· 4                                                                                                     | 0                                                                                                |   | -2                                                                                                         | 249                                                                                      | 30                                            | 285                                                                                                         |
| 5                                                  | 0                                                                                            | <b>3</b>                                                                                                   | 1                                                                                                |   | <del>-</del> 3                                                                                             | 265                                                                                      | 9                                             | 280                                                                                                         |
| 6                                                  | 1                                                                                            | 1                                                                                                          | 1                                                                                                |   | 0                                                                                                          | 252                                                                                      | 15                                            | 271                                                                                                         |
| 7                                                  | <del>-</del> 2                                                                               | 0                                                                                                          | <del>-</del> 3                                                                                   |   | -1                                                                                                         | 253                                                                                      | 21                                            | 281                                                                                                         |
| 8                                                  | 2                                                                                            | 0                                                                                                          | 0                                                                                                |   | 1                                                                                                          | 243                                                                                      | 15                                            | 261                                                                                                         |
| 9                                                  | 1                                                                                            | 4                                                                                                          | 0                                                                                                |   | 1                                                                                                          | 243                                                                                      | 15                                            | 263                                                                                                         |
| 10                                                 | -1                                                                                           | <del>-</del> 2                                                                                             | 0                                                                                                |   | 2                                                                                                          | 240                                                                                      | 14                                            | 259                                                                                                         |
| 11                                                 | 1                                                                                            | 1                                                                                                          | 2                                                                                                |   | 0                                                                                                          | 238                                                                                      | 14                                            | 254                                                                                                         |
| 12                                                 | 4                                                                                            | 4                                                                                                          | 0                                                                                                |   | -1                                                                                                         | 248                                                                                      | 11                                            | 270                                                                                                         |
| 13                                                 | 2                                                                                            | 9                                                                                                          | 0                                                                                                |   | -1                                                                                                         | 242                                                                                      | 12                                            | 268                                                                                                         |
| 14                                                 | -3                                                                                           | -1                                                                                                         | -1                                                                                               |   | -4                                                                                                         | 231                                                                                      | 18                                            | 260                                                                                                         |
| 15                                                 | -1                                                                                           | 6                                                                                                          | 0                                                                                                |   | 0                                                                                                          | 241                                                                                      | 24                                            | 271                                                                                                         |
| 16                                                 | 1                                                                                            | 6                                                                                                          | 0                                                                                                |   | -2                                                                                                         | 230                                                                                      | 18                                            | 258                                                                                                         |
| 17                                                 | 3                                                                                            | 8                                                                                                          | 0                                                                                                |   | -2                                                                                                         | 233                                                                                      | 11                                            | 259                                                                                                         |
| 18                                                 | 1                                                                                            | 5                                                                                                          | 1                                                                                                |   | 0                                                                                                          | 228                                                                                      | 9                                             | 245                                                                                                         |
| 19                                                 | 4                                                                                            | 10                                                                                                         | 0                                                                                                |   | 0                                                                                                          | 235                                                                                      | 0                                             | 252                                                                                                         |
| 20                                                 | 0                                                                                            | 1                                                                                                          | 0                                                                                                |   | -2                                                                                                         | 233                                                                                      | 0                                             | 236                                                                                                         |
|                                                    |                                                                                              |                                                                                                            |                                                                                                  |   |                                                                                                            |                                                                                          |                                               |                                                                                                             |
|                                                    |                                                                                              |                                                                                                            |                                                                                                  | _ |                                                                                                            |                                                                                          |                                               |                                                                                                             |
| EXPERIM                                            |                                                                                              | INITIAL                                                                                                    | COND                                                                                             | 3 | SUBJ                                                                                                       |                                                                                          | RED LENGTH                                    | 20                                                                                                          |
| TRIAL                                              | X2                                                                                           | X2D                                                                                                        | Х3                                                                                               | 3 | X3D                                                                                                        | TIME                                                                                     | ITGL                                          | ΡI                                                                                                          |
| TRIAL<br>1                                         | X2<br>0                                                                                      | X2D<br>0                                                                                                   | X3<br>-2                                                                                         | 3 | X3D<br>-10                                                                                                 | TIME<br>296                                                                              | ITGL<br>O                                     | 91<br>310                                                                                                   |
| TRIAL<br>1<br>2                                    | X2<br>0<br>0                                                                                 | X2D<br>0<br>-4                                                                                             | X3<br>-2<br>-1                                                                                   | 3 | X3D<br>-10<br>-3                                                                                           | TIME<br>296<br>317                                                                       | ITGL                                          | 9I<br>310<br>326                                                                                            |
| TRIAL<br>1<br>2<br>3                               | X2<br>0<br>0<br>0                                                                            | X2D<br>0<br>-4<br>10                                                                                       | X3<br>-2<br>-1<br>0                                                                              | 3 | X3D<br>-10<br>-3<br>-6                                                                                     | TIME<br>296<br>317<br>275                                                                | ITGL<br>0<br>0                                | PI<br>310<br>326<br>291                                                                                     |
| TRIAL<br>1<br>2<br>3<br>4                          | X2<br>0<br>0<br>0<br>-1                                                                      | X2D<br>0<br>-4<br>10<br>0                                                                                  | X3<br>-2<br>-1<br>0                                                                              | 3 | X3D<br>-10<br>-3<br>-6<br>-4                                                                               | TIME<br>296<br>317<br>275<br>262                                                         | 1TGL<br>0<br>0<br>0                           | PI<br>310<br>326<br>291<br>267                                                                              |
| TRIAL 1 2 3 4 5                                    | X2<br>0<br>0<br>0<br>-1<br>-1                                                                | X2D<br>0<br>-4<br>10<br>0<br>.28                                                                           | X3<br>-2<br>-1<br>0<br>0                                                                         | 3 | X3D<br>-10<br>-3<br>-6<br>-4<br>-16                                                                        | TIME<br>296<br>317<br>275<br>262<br>251                                                  | ITGL<br>0<br>0<br>0<br>0                      | PI<br>310<br>326<br>291<br>267<br>295                                                                       |
| TRIAL 1 2 3 4 5 6                                  | X2<br>0<br>0<br>0<br>-1<br>-1<br>-2                                                          | X2D<br>0<br>-4<br>10<br>0<br>.28<br>2                                                                      | X3<br>-2<br>-1<br>0<br>0<br>2                                                                    | 3 | X3D<br>-10<br>-3<br>-6<br>-4<br>-16<br>-16                                                                 | TIME<br>296<br>317<br>275<br>262<br>251<br>218                                           | 1TGL<br>0<br>0<br>0<br>0<br>0<br>42           | PI<br>310<br>326<br>291<br>267<br>295<br>279                                                                |
| TRIAL 1 2 3 4 5 6 7                                | X2<br>0<br>0<br>0<br>-1<br>-1<br>-2<br>-12                                                   | X2D<br>0<br>-4<br>10<br>0<br>28<br>2                                                                       | X3<br>-2<br>-1<br>0<br>0<br>2<br>1                                                               | 3 | X3D<br>-10<br>-3<br>-6<br>-4<br>-16<br>-16                                                                 | TIME<br>296<br>317<br>275<br>262<br>251<br>218<br>264                                    | 1TGL<br>0<br>0<br>0<br>0<br>42                | PI<br>310<br>326<br>291<br>267<br>295<br>279<br>298                                                         |
| TRIAL 1 2 3 4 5 6 7 8                              | X2<br>0<br>0<br>0<br>-1<br>-1<br>-2<br>-12                                                   | X2D<br>0<br>-4<br>10<br>0<br>28<br>2<br>20<br>20                                                           | X3 -2 -1 0 0 2 1 -3 0                                                                            | 3 | X3D<br>-10<br>-3<br>-6<br>-4<br>-16<br>-16<br>-16                                                          | TIME<br>296<br>317<br>275<br>262<br>251<br>218<br>264<br>244                             | 1 TGL<br>0<br>0<br>0<br>0<br>42<br>0          | PI<br>310<br>326<br>291<br>267<br>295<br>279<br>298<br>286                                                  |
| TRIAL 1 2 3 4 5 6 7 8 9                            | X2<br>0<br>0<br>0<br>-1<br>-1<br>-2<br>-12<br>-9<br>-13                                      | X2D<br>0<br>-4<br>10<br>0<br>.28<br>2<br>20<br>20<br>14                                                    | X3<br>-2<br>-1<br>0<br>0<br>2<br>1<br>-3<br>0                                                    | 3 | X3D<br>-10<br>-3<br>-6<br>-4<br>-16<br>-16<br>-9<br>-14<br>-20                                             | TIME<br>296<br>317<br>275<br>262<br>251<br>218<br>264<br>244<br>230                      | 1 TGL<br>0<br>0<br>0<br>0<br>42<br>0<br>5     | PI<br>310<br>326<br>291<br>267<br>295<br>279<br>298<br>286<br>275                                           |
| TRIAL 1 2 3 4 5 6 7 8 9 10                         | X2<br>0<br>0<br>0<br>-1<br>-1<br>-2<br>-12<br>-9<br>-13                                      | X2D<br>0<br>-4<br>10<br>0<br>.28<br>2<br>20<br>20<br>14<br>32                                              | X3<br>-2<br>-1<br>0<br>0<br>2<br>1<br>-3<br>0<br>0                                               | 3 | X3D<br>-10<br>-3<br>-6<br>-4<br>-16<br>-16<br>-16<br>-14<br>-20<br>12                                      | TIME<br>296<br>317<br>275<br>262<br>251<br>218<br>264<br>244<br>230<br>303               | 1 TGL<br>000000000000000000000000000000000000 | PI<br>310<br>326<br>291<br>267<br>295<br>279<br>298<br>286<br>275<br>362                                    |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11                      | X2<br>0<br>0<br>0<br>-1<br>-1<br>-2<br>-12<br>-9<br>-13                                      | X2D<br>0<br>-4<br>10<br>0<br>28<br>2<br>20<br>20<br>14<br>32<br>8                                          | X3 -2 -1 0 0 2 1 -3 0 -8 -1                                                                      | 3 | X3D<br>-10<br>-3<br>-6<br>-4<br>-16<br>-16<br>-16<br>-12<br>-20                                            | TIME<br>296<br>317<br>275<br>262<br>251<br>218<br>264<br>244<br>230<br>303<br>236        | 1TGL<br>00000042<br>04205562                  | PI<br>310<br>326<br>291<br>267<br>295<br>279<br>298<br>286<br>275<br>362<br>269                             |
| TRIAL  1 2 3 4 5 6 7 8 9 10 11 12                  | X2<br>0<br>0<br>0<br>-1<br>-1<br>-2<br>-12<br>-9<br>-13<br>3<br>1<br>-2                      | X2D<br>0<br>-4<br>10<br>0<br>28<br>2<br>20<br>20<br>14<br>32<br>8<br>16                                    | X3 -2 -1 0 0 2 1 -3 0 -8 -1 6                                                                    | 3 | X3D<br>-10<br>-3<br>-6<br>-4<br>-16<br>-16<br>9<br>-14<br>-20<br>12<br>-20<br>-16                          | TIME<br>296<br>317<br>275<br>262<br>251<br>218<br>264<br>230<br>303<br>236<br>232        | 1TGL<br>000000000000000000000000000000000000  | PI<br>310<br>326<br>291<br>267<br>295<br>279<br>298<br>286<br>275<br>362<br>269<br>278                      |
| TRIAL  1 2 3 4 5 6 7 8 9 10 11 12 13               | X2<br>0<br>0<br>0<br>-1<br>-1<br>-2<br>-12<br>-9<br>-13<br>3<br>1<br>-2<br>0                 | X2D<br>0<br>-4<br>10<br>0<br>28<br>2<br>20<br>20<br>14<br>32<br>8<br>16<br>-1                              | X3 -2 -1 0 0 2 1 -3 0 -8 -1 6 0                                                                  | 3 | X3D<br>-10<br>-3<br>-6<br>-4<br>-16<br>-16<br>9<br>-14<br>-20<br>12<br>-20<br>-16<br>-1                    | TIME<br>296<br>317<br>275<br>262<br>251<br>218<br>264<br>230<br>303<br>236<br>232<br>230 | ITGL 000000000000000000000000000000000000     | PI<br>310<br>326<br>291<br>267<br>295<br>279<br>298<br>286<br>275<br>362<br>269<br>278<br>276               |
| TRIAL  1 2 3 4 5 6 7 8 9 10 11 12 13 14            | X2<br>0<br>0<br>-1<br>-1<br>-2<br>-12<br>-9<br>-13<br>3<br>1<br>-2<br>0<br>3                 | X2D<br>0<br>-4<br>10<br>0<br>28<br>2<br>20<br>20<br>14<br>32<br>8<br>16<br>-1<br>-12                       | X3<br>-2<br>-1<br>0<br>0<br>2<br>1<br>-3<br>0<br>0<br>-8<br>-1<br>6<br>0                         | 3 | X3D<br>-10<br>-3<br>-6<br>-4<br>-16<br>-16<br>-14<br>-20<br>12<br>-20<br>-16<br>-1                         | TIME 296 317 275 262 251 218 264 230 303 236 232 230 239                                 | 1TGL<br>000000000000000000000000000000000000  | PI<br>310<br>326<br>291<br>267<br>295<br>279<br>286<br>275<br>362<br>269<br>278<br>276<br>253               |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15          | X2<br>0<br>0<br>0<br>-1<br>-1<br>-2<br>-12<br>-9<br>-13<br>3<br>1<br>-2<br>0<br>3<br>-1      | X2D<br>0<br>-4<br>10<br>0<br>28<br>2<br>20<br>20<br>14<br>32<br>8<br>16<br>-1<br>-12<br>3                  | X3<br>-2<br>-1<br>0<br>0<br>2<br>1<br>-3<br>0<br>0<br>-8<br>-1<br>6<br>0<br>0                    | 3 | X3D<br>-10<br>-3<br>-6<br>-4<br>-16<br>-16<br>-14<br>-20<br>12<br>-20<br>-16<br>-1<br>-1                   | TIME 296 317 275 262 251 218 264 244 230 303 236 232 239 244                             | 1TGL 000000000000000000000000000000000000     | PI<br>310<br>326<br>291<br>267<br>295<br>279<br>286<br>275<br>362<br>269<br>278<br>276<br>253<br>250        |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16       | X2<br>0<br>0<br>0<br>-1<br>-1<br>-2<br>-12<br>-9<br>-13<br>3<br>1<br>-2<br>0<br>3<br>-1<br>0 | X2D<br>0<br>-4<br>10<br>0<br>28<br>20<br>20<br>14<br>32<br>8<br>16<br>-1<br>-12<br>3<br>-3                 | X3<br>-2<br>-1<br>0<br>0<br>2<br>1<br>-3<br>0<br>0<br>-8<br>-1<br>6<br>0<br>0<br>1<br>0          | 3 | X3D<br>-10<br>-3<br>-6<br>-4<br>-16<br>-16<br>-14<br>-20<br>-12<br>-20<br>-16<br>-1<br>-1<br>-2<br>-2      | TIME 296 317 275 262 251 218 264 244 230 3236 239 244 231                                | 1TGL<br>000000000000000000000000000000000000  | PI<br>310<br>326<br>291<br>267<br>295<br>279<br>286<br>275<br>362<br>269<br>278<br>250<br>236               |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17    | X2<br>0<br>0<br>0<br>-1<br>-1<br>-2<br>-12<br>-9<br>-13<br>3<br>1<br>-2<br>0<br>6            | X2D<br>0<br>-4<br>10<br>0<br>28<br>20<br>20<br>14<br>32<br>8<br>16<br>-1<br>-12<br>3<br>8                  | X3<br>-2<br>-1<br>0<br>0<br>2<br>1<br>-3<br>0<br>0<br>-8<br>-1<br>6<br>0<br>0<br>1               | 3 | X3D<br>-10<br>-3<br>-6<br>-4<br>-16<br>-16<br>-14<br>-20<br>12<br>-20<br>-16<br>-1<br>-1<br>-2<br>-2       | TIME 296 317 275 262 251 218 264 230 336 232 239 244 231 230                             | 1TGL 00000 4205 6211 440000                   | PI<br>310<br>326<br>291<br>267<br>295<br>279<br>286<br>275<br>362<br>269<br>278<br>250<br>236<br>248        |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | X2<br>0<br>0<br>0<br>-1<br>-1<br>-2<br>-12<br>-9<br>-13<br>3<br>1<br>-2<br>0<br>6<br>0       | X2D<br>0<br>-4<br>10<br>0<br>28<br>2<br>20<br>20<br>14<br>32<br>8<br>16<br>-1<br>-12<br>3<br>-3<br>8<br>22 | X3<br>-2<br>-1<br>0<br>0<br>2<br>1<br>-3<br>0<br>0<br>8<br>-1<br>6<br>0<br>0<br>1<br>2<br>1<br>2 | 3 | X3D<br>-10<br>-3<br>-6<br>-4<br>-16<br>-16<br>-14<br>-20<br>12<br>-20<br>-16<br>-1<br>-1<br>-2<br>-2<br>-1 | TIME 296 317 275 262 251 218 264 230 303 236 232 239 244 231 230 238                     | ITGL 00000042055621144000000                  | PI<br>310<br>326<br>291<br>267<br>295<br>279<br>298<br>275<br>362<br>269<br>278<br>250<br>236<br>248<br>264 |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17    | X2<br>0<br>0<br>0<br>-1<br>-1<br>-2<br>-12<br>-9<br>-13<br>3<br>1<br>-2<br>0<br>6            | X2D<br>0<br>-4<br>10<br>0<br>28<br>20<br>20<br>14<br>32<br>8<br>16<br>-1<br>-12<br>3<br>8                  | X3<br>-2<br>-1<br>0<br>0<br>2<br>1<br>-3<br>0<br>0<br>-8<br>-1<br>6<br>0<br>0<br>1               | 3 | X3D<br>-10<br>-3<br>-6<br>-4<br>-16<br>-16<br>-14<br>-20<br>12<br>-20<br>-16<br>-1<br>-1<br>-2<br>-2       | TIME 296 317 275 262 251 218 264 230 336 232 239 244 231 230                             | 1TGL 00000 4205 6211 440000                   | PI<br>310<br>326<br>291<br>267<br>295<br>279<br>286<br>275<br>362<br>269<br>278<br>250<br>236<br>248        |

| EXPERTA                                            | ENT 2                                                                             | INITIAL                                                                            | COND                                                                                    | 3 | SUBJ                                                                                             | 2 PR                                                                                     | RED LENGTH                                                                                               | 20                                                                                                                                                                  |
|----------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TRIAL                                              | X 2                                                                               | X2D                                                                                | Х3                                                                                      |   | X3D                                                                                              | TIME                                                                                     | ITGL                                                                                                     | ЬΙ                                                                                                                                                                  |
| 1                                                  | 0                                                                                 | 2                                                                                  | <del>-</del> 3                                                                          |   | <b>2</b>                                                                                         | 267                                                                                      | 120                                                                                                      | 395                                                                                                                                                                 |
| 2                                                  | 2                                                                                 | 14                                                                                 | -2                                                                                      |   | <b>2</b>                                                                                         | 252                                                                                      | 75                                                                                                       | 350                                                                                                                                                                 |
| 3                                                  | ana Lp                                                                            | <b></b> 2                                                                          | 1                                                                                       |   | ··· 2                                                                                            | 244                                                                                      | 60                                                                                                       | 314                                                                                                                                                                 |
| 4                                                  | <b>-</b> 10                                                                       | 20                                                                                 | 0                                                                                       |   | 7                                                                                                | 257                                                                                      | 15                                                                                                       | 302                                                                                                                                                                 |
| 5                                                  | 0                                                                                 | 10                                                                                 | 1                                                                                       |   | O                                                                                                | 210                                                                                      | 42                                                                                                       | 263                                                                                                                                                                 |
| 6                                                  | 12                                                                                | 8                                                                                  | 0                                                                                       |   | 1                                                                                                | 240                                                                                      | 78                                                                                                       | 344                                                                                                                                                                 |
| 7                                                  | <del> 1</del>                                                                     | 8                                                                                  | 0                                                                                       |   | 1                                                                                                | 221                                                                                      | 47                                                                                                       | 277                                                                                                                                                                 |
| 8                                                  | <del>-</del> 3                                                                    | 10                                                                                 | -1                                                                                      |   | -1                                                                                               | 230                                                                                      | 18                                                                                                       | 261                                                                                                                                                                 |
| 9                                                  | 1                                                                                 | 0                                                                                  | 1                                                                                       |   | 0                                                                                                | 255                                                                                      | 30                                                                                                       | 287                                                                                                                                                                 |
| 10                                                 | 0                                                                                 | 1                                                                                  | 1                                                                                       |   | 0                                                                                                | 220                                                                                      | 38                                                                                                       | 260                                                                                                                                                                 |
| 11                                                 | l                                                                                 | <del></del> 1                                                                      | 0                                                                                       |   | - 1                                                                                              | 237                                                                                      | 36                                                                                                       | 277                                                                                                                                                                 |
| 12                                                 | 0                                                                                 | <del>-</del> 3                                                                     | on ]                                                                                    |   | -2                                                                                               | 253                                                                                      | 41                                                                                                       | 300                                                                                                                                                                 |
| 13                                                 | <del></del> 2                                                                     | 10                                                                                 | 0                                                                                       |   | 0                                                                                                | 224                                                                                      | 8                                                                                                        | 242                                                                                                                                                                 |
| 14                                                 | <b>-1</b>                                                                         | 2                                                                                  | 0                                                                                       |   | ···· 2                                                                                           | 213                                                                                      | 42                                                                                                       | 259                                                                                                                                                                 |
| 15                                                 | <del>-</del> 2                                                                    | 4                                                                                  | 0                                                                                       |   | 0                                                                                                | 246                                                                                      | 5                                                                                                        | 255                                                                                                                                                                 |
| 16                                                 | O                                                                                 | 2                                                                                  | 0                                                                                       |   | <b> 1</b>                                                                                        | 227                                                                                      | C                                                                                                        | 230                                                                                                                                                                 |
| 17                                                 | <b> 1</b>                                                                         | 0                                                                                  | 2                                                                                       |   | <b>2</b>                                                                                         | 214                                                                                      | 18                                                                                                       | 236                                                                                                                                                                 |
| 18                                                 | ၁                                                                                 | 0                                                                                  | 2                                                                                       |   | -2                                                                                               | 228                                                                                      | 5                                                                                                        | 236                                                                                                                                                                 |
| 19                                                 | o                                                                                 | 0                                                                                  | 1                                                                                       |   | 0                                                                                                | 252                                                                                      | 9                                                                                                        | 262                                                                                                                                                                 |
| 20                                                 | 1                                                                                 | <del>-</del> 2                                                                     | 1                                                                                       |   | - 1                                                                                              | 234                                                                                      | 5                                                                                                        | 244                                                                                                                                                                 |
|                                                    |                                                                                   |                                                                                    |                                                                                         |   |                                                                                                  |                                                                                          |                                                                                                          |                                                                                                                                                                     |
|                                                    | 450 T 2                                                                           | T N: T T T A 1                                                                     | COND                                                                                    | 2 | CLUD I                                                                                           | 2 0.0                                                                                    | DED LENGTH                                                                                               | 20                                                                                                                                                                  |
| EXPERIM                                            |                                                                                   | INITIAL                                                                            | COND                                                                                    | 3 | SUBJ                                                                                             |                                                                                          | RED LENGTH                                                                                               | 20                                                                                                                                                                  |
| TRIAL                                              | X 2                                                                               | X2D                                                                                | х3                                                                                      | 3 | X3D                                                                                              | TIME                                                                                     | ITGL                                                                                                     | Ιq                                                                                                                                                                  |
| TRIAL 1                                            | X 2                                                                               | X2D<br>4                                                                           | X3<br>0                                                                                 | 3 | X3D<br>-3                                                                                        | TIME<br>253                                                                              | ITGL<br>60                                                                                               | 923                                                                                                                                                                 |
| TRIAL<br>1<br>2                                    | X2<br>-2<br>10                                                                    | X2D<br>-4<br>0                                                                     | X3<br>0<br>0                                                                            | 3 | X3D<br>-3<br>-2                                                                                  | TIME<br>253<br>270                                                                       | I TGL<br>60<br>75                                                                                        | PI<br>323<br>357                                                                                                                                                    |
| TRIAL<br>1<br>2<br>3                               | X2<br>-2<br>10<br>-3                                                              | X2D<br>=-4<br>0<br>=-8                                                             | X3<br>0<br>0<br>0                                                                       | 3 | X3D<br>-3<br>-2<br>-3                                                                            | TIME<br>253<br>270<br>252                                                                | I TGL<br>60<br>75<br>30                                                                                  | PI<br>323<br>357<br>298                                                                                                                                             |
| TRIAL<br>1<br>2<br>3<br>4                          | X2<br>-2<br>10<br>-3<br>-1                                                        | X2D<br>4<br>0<br>8<br>4                                                            | X3<br>0<br>0<br>0                                                                       | 3 | X3D<br>-3<br>-2<br>-3<br>-1                                                                      | TIME<br>253<br>270<br>252<br>247                                                         | I TGL<br>60<br>75<br>30<br>30                                                                            | PI<br>323<br>357<br>298<br>284                                                                                                                                      |
| TRIAL<br>1<br>2<br>3<br>4<br>5                     | X2<br>-2<br>10<br>-3<br>-1                                                        | X2D<br>4<br>0<br>8<br>4<br>2                                                       | X3<br>0<br>0<br>0<br>0                                                                  | 3 | X3D<br>-3<br>-2<br>-3<br>-1<br>0                                                                 | TIME<br>253<br>270<br>252<br>247<br>253                                                  | ITGL<br>60<br>75<br>30<br>30<br>6                                                                        | PI<br>323<br>357<br>298<br>284<br>264                                                                                                                               |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6                | X2<br>-2<br>10<br>-3<br>-1<br>1                                                   | X2D<br>-4<br>0<br>-8<br>-4<br>2<br>6                                               | X3<br>0<br>0<br>0<br>0                                                                  | 3 | X3D<br>-3<br>-2<br>-3<br>-1<br>0                                                                 | TIME<br>253<br>270<br>252<br>247<br>253<br>252                                           | 1 TGL<br>60<br>75<br>30<br>30<br>6                                                                       | PI<br>323<br>357<br>298<br>284<br>264<br>272                                                                                                                        |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7           | X2<br>-2<br>10<br>-3<br>-1<br>1                                                   | X2D<br>-4<br>0<br>-8<br>-4<br>2<br>6<br>-3                                         | X3<br>0<br>0<br>0<br>0<br>1<br>0                                                        | 3 | X3D<br>-3<br>-2<br>-3<br>-1<br>0<br>-2                                                           | TIME<br>253<br>270<br>252<br>247<br>253<br>252<br>262                                    | 1 TGL<br>60<br>75<br>30<br>30<br>6<br>12                                                                 | PI<br>323<br>357<br>298<br>284<br>264<br>272<br>274                                                                                                                 |
| TRIAL 1 2 3 4 5 6 7 8                              | X2<br>-2<br>10<br>-3<br>-1<br>1<br>-1<br>2                                        | X2D<br>-4<br>0<br>-8<br>-4<br>2<br>6<br>-3<br>5                                    | X3<br>0<br>0<br>0<br>1<br>0<br>-1                                                       | 3 | X3D<br>-3<br>-2<br>-3<br>-1<br>0<br>-2<br>0                                                      | TIME<br>253<br>270<br>252<br>247<br>253<br>252<br>262<br>238                             | 1 TGL<br>60<br>75<br>30<br>30<br>6<br>12<br>8                                                            | PI<br>323<br>357<br>298<br>284<br>264<br>272<br>274<br>252                                                                                                          |
| TRIAL 1 2 3 4 5 6 7 8 9                            | X2<br>-2<br>10<br>-3<br>-1<br>1<br>-1<br>2                                        | X2D<br>-4<br>0<br>-8<br>-4<br>2<br>6<br>-3<br>5                                    | X3<br>0<br>0<br>0<br>0<br>1<br>0<br>-1<br>0                                             | 3 | X3D<br>-3<br>-2<br>-3<br>-1<br>0<br>-2<br>0<br>-1                                                | TIME<br>253<br>270<br>252<br>247<br>253<br>252<br>262<br>238<br>244                      | 1 TGL<br>60<br>75<br>30<br>30<br>6<br>12<br>8                                                            | PI<br>323<br>357<br>298<br>284<br>264<br>272<br>274<br>252<br>249                                                                                                   |
| TRIAL 1 2 3 4 5 6 7 8 9 10                         | X2<br>-2<br>10<br>-3<br>-1<br>1<br>-1<br>2                                        | X2D<br>-4<br>0<br>-8<br>-4<br>2<br>6<br>-3<br>5<br>2                               | X3<br>0<br>0<br>0<br>0<br>1<br>0<br>-1<br>0<br>0                                        | 3 | X3D<br>-3<br>-2<br>-3<br>-1<br>0<br>-2<br>0<br>-1                                                | TIME<br>253<br>270<br>252<br>247<br>253<br>252<br>262<br>238<br>244<br>241               | 1 TGL<br>60<br>75<br>30<br>30<br>6<br>12<br>8<br>6<br>3                                                  | PI<br>323<br>357<br>298<br>284<br>264<br>272<br>274<br>252<br>249<br>259                                                                                            |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11                      | X2<br>-2<br>10<br>-3<br>-1<br>1<br>-1<br>2<br>1<br>-2                             | X2D<br>-4<br>0<br>-8<br>-4<br>2<br>6<br>-3<br>5<br>2<br>0                          | X3<br>0<br>0<br>0<br>0<br>1<br>0<br>-1<br>0<br>0                                        | 3 | X3D<br>-3<br>-2<br>-3<br>-1<br>0<br>-2<br>0<br>-1<br>0                                           | TIME<br>253<br>270<br>252<br>247<br>253<br>252<br>262<br>238<br>244<br>241<br>237        | 1 TGL<br>60<br>75<br>30<br>30<br>6<br>12<br>8<br>6<br>3<br>15<br>20                                      | PI<br>323<br>357<br>298<br>284<br>264<br>272<br>274<br>252<br>249<br>259<br>260                                                                                     |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12                   | X2<br>-2<br>10<br>-3<br>-1<br>1<br>-1<br>2<br>1<br>-1<br>-2<br>1                  | X2D<br>-4<br>0<br>-8<br>-4<br>2<br>6<br>-3<br>5<br>2<br>0<br>1<br>0                | X3<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0                                    | 3 | X3D<br>-3<br>-2<br>-3<br>-1<br>0<br>-2<br>0<br>-1<br>0<br>-1<br>-1                               | TIME<br>253<br>270<br>252<br>247<br>253<br>252<br>262<br>238<br>244<br>241<br>237<br>249 | 1 TGL<br>60<br>75<br>30<br>30<br>6<br>12<br>8<br>6<br>3<br>15<br>20<br>8                                 | PI<br>323<br>357<br>298<br>264<br>272<br>259<br>269<br>259                                                                                                          |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13                | X2<br>-2<br>10<br>-3<br>-1<br>1<br>-1<br>2<br>1<br>-2<br>1                        | X2D<br>-4<br>0<br>-8<br>-4<br>2<br>6<br>-3<br>5<br>2<br>0<br>1<br>0                | X3<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0                               | 3 | X3D<br>-3<br>-2<br>-3<br>-1<br>0<br>-2<br>0<br>-1<br>0<br>-1<br>-1<br>-1                         | TIME 253 270 252 247 253 252 262 238 244 241 237 249 233                                 | 1 TGL<br>60<br>75<br>30<br>30<br>6<br>12<br>8<br>6<br>3<br>15<br>20<br>8                                 | PI<br>323<br>357<br>298<br>264<br>274<br>252<br>259<br>269<br>259<br>247                                                                                            |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14             | X2<br>-2<br>10<br>-3<br>-1<br>1<br>-1<br>2<br>1<br>-2<br>1                        | X2D<br>-4<br>0<br>-8<br>-4<br>2<br>6<br>-3<br>5<br>2<br>0<br>1<br>0                | X3<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0                               | 3 | X3D<br>-3<br>-2<br>-3<br>-1<br>0<br>-2<br>0<br>-1<br>0<br>-1<br>-1<br>-1<br>-2<br>-2             | TIME 253 270 252 247 253 252 262 238 244 241 237 249 233 219                             | 1 TGL<br>60<br>75<br>30<br>30<br>6<br>12<br>8<br>6<br>3<br>15<br>20<br>8<br>12<br>21                     | PI<br>323<br>357<br>284<br>264<br>274<br>259<br>269<br>259<br>244<br>244                                                                                            |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15          | X2<br>-2<br>10<br>-3<br>-1<br>1<br>-1<br>2<br>1<br>-2<br>1<br>0<br>0              | X2D<br>-4<br>0<br>-8<br>-4<br>2<br>6<br>-3<br>5<br>2<br>0<br>1<br>0<br>0<br>2      | X3<br>00<br>00<br>01<br>01<br>00<br>00<br>00<br>01<br>01                                | 3 | X3D<br>-3<br>-2<br>-3<br>-1<br>0<br>-2<br>0<br>-1<br>-1<br>-1<br>-2<br>-2<br>-2                  | TIME 253 270 252 247 253 252 244 241 237 249 225                                         | 1 TGL<br>60<br>75<br>30<br>30<br>6<br>12<br>8<br>6<br>3<br>15<br>20<br>8<br>12<br>21<br>8                | PI<br>3237<br>284<br>264<br>274<br>259<br>265<br>265<br>265<br>274<br>267<br>267<br>267<br>267<br>274<br>274<br>274<br>274<br>274<br>274<br>274<br>274<br>274<br>27 |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16       | X2<br>-2<br>10<br>-3<br>-1<br>1<br>-1<br>2<br>1<br>-2<br>1<br>0<br>0              | X2D<br>-4<br>0<br>-8<br>-4<br>2<br>6<br>-3<br>5<br>2<br>0<br>1<br>0<br>0<br>0<br>2 | X3<br>00<br>00<br>00<br>10<br>-10<br>00<br>00<br>-10<br>-10                             | 3 | X3D<br>-3<br>-2<br>-3<br>-1<br>0<br>-2<br>0<br>-1<br>0<br>-1<br>-1<br>-1<br>-2<br>-2<br>-2<br>-2 | TIME 253 270 252 247 253 252 238 244 241 237 249 233 219 225 232                         | 1 TGL<br>60<br>75<br>30<br>30<br>6<br>12<br>8<br>6<br>3<br>15<br>20<br>8<br>12<br>21<br>8                | PI<br>3237<br>284<br>272<br>274<br>259<br>265<br>274<br>259<br>265<br>274<br>277<br>277<br>277                                                                      |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17    | X2<br>-2<br>10<br>-3<br>-1<br>-1<br>-1<br>-2<br>1<br>-2<br>1<br>0<br>0<br>-2<br>1 | X2D<br>-4<br>0<br>-8<br>-4<br>2<br>6<br>-3<br>5<br>2<br>0<br>1<br>0<br>0<br>0<br>2 | X3<br>00<br>00<br>00<br>10<br>-10<br>00<br>00<br>-10<br>-11                             | 3 | X3D<br>-3<br>-2<br>-3<br>-1<br>0<br>-2<br>0<br>-1<br>0<br>-1<br>-1<br>-1<br>-2<br>-2<br>-2<br>-2 | TIME 253 270 252 247 253 252 244 241 237 249 225 232 224                                 | 1 TGL<br>60<br>75<br>30<br>30<br>6<br>12<br>8<br>6<br>3<br>15<br>20<br>8<br>12<br>21<br>8<br>0<br>6      | PI<br>3237<br>284<br>264<br>274<br>259<br>269<br>269<br>269<br>274<br>237<br>234                                                                                    |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | X2<br>-2<br>10<br>-3<br>-1<br>-1<br>-1<br>-2<br>1<br>-2<br>1<br>0<br>0<br>-2<br>1 | X2D<br>-4<br>0<br>-8<br>-4<br>2<br>6<br>-3<br>5<br>2<br>0<br>1<br>0<br>0<br>0<br>2 | X3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>1<br>0 | 3 | X3D -3 -2 -3 -1 0 -2 0 -1 0 -1 -1 -2 -2 -2 -1 0 -1                                               | TIME 253 270 252 247 253 252 234 241 237 225 224 226                                     | 1 TGL<br>60<br>75<br>30<br>30<br>6<br>12<br>8<br>6<br>3<br>15<br>20<br>8<br>12<br>21<br>8<br>0<br>6<br>5 | PI<br>327<br>284<br>274<br>225<br>245<br>259<br>265<br>274<br>274<br>274<br>275<br>275<br>275<br>275<br>275<br>275<br>275<br>275<br>275<br>275                      |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17    | X2<br>-2<br>10<br>-3<br>-1<br>-1<br>-1<br>-2<br>1<br>-2<br>1<br>0<br>0<br>-2<br>1 | X2D<br>-4<br>0<br>-8<br>-4<br>2<br>6<br>-3<br>5<br>2<br>0<br>1<br>0                | X3<br>00<br>00<br>00<br>10<br>-10<br>00<br>00<br>-10<br>-11                             | 3 | X3D<br>-3<br>-2<br>-3<br>-1<br>0<br>-2<br>0<br>-1<br>0<br>-1<br>-1<br>-1<br>-2<br>-2<br>-2<br>-2 | TIME 253 270 252 247 253 252 244 241 237 249 225 232 224                                 | 1 TGL<br>60<br>75<br>30<br>30<br>6<br>12<br>8<br>6<br>3<br>15<br>20<br>8<br>12<br>21<br>8<br>0<br>6      | PI<br>3237<br>284<br>264<br>274<br>259<br>269<br>269<br>269<br>274<br>237<br>234                                                                                    |

| EXPERIMENT 2                                                                                        | INITIAL                                                                                      | COND                                                  | 4 SUBJ                                                                                     | 1 PRE                                                                             | ED LENGTH                                                                                | 0                                                                                                                  |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| TRIAL X2                                                                                            | X20                                                                                          | X3                                                    | X3D                                                                                        | TIME                                                                              | ITGL                                                                                     | ΡI                                                                                                                 |
| 1 1                                                                                                 | 1                                                                                            | -1                                                    | <b>~ 1</b>                                                                                 | 269                                                                               | O                                                                                        | 274                                                                                                                |
| 2 0                                                                                                 | -2                                                                                           | 6                                                     | -20                                                                                        | 254                                                                               | 60                                                                                       | 337                                                                                                                |
| 3 -6                                                                                                | 27                                                                                           | <b></b> 2                                             | Ü                                                                                          | 259                                                                               | <b>5</b> 0                                                                               | 349                                                                                                                |
| 4 -4                                                                                                | 10                                                                                           | <del>-</del> 5                                        | 1                                                                                          | 226                                                                               | C                                                                                        | 242                                                                                                                |
| 5 -10                                                                                               | 36                                                                                           | 15                                                    | <del>~</del> 5                                                                             | 179                                                                               | 32                                                                                       | 265                                                                                                                |
| 6 -2                                                                                                | 32                                                                                           | 1                                                     | <del>-</del> 36                                                                            | 201                                                                               | 23                                                                                       | 292                                                                                                                |
| 7 -2                                                                                                | 10                                                                                           | 0                                                     | 0                                                                                          | 234                                                                               | 57                                                                                       | 301                                                                                                                |
| 8 -8                                                                                                | 8                                                                                            | 10                                                    | -40                                                                                        | 183                                                                               | 42                                                                                       | 279                                                                                                                |
| 9 -14                                                                                               | 10                                                                                           | 9                                                     | -12                                                                                        | 182                                                                               | 6                                                                                        | 222                                                                                                                |
| 10 -14                                                                                              | 2                                                                                            | 14                                                    | <del>-</del> 40                                                                            | 175                                                                               | 24                                                                                       | 257                                                                                                                |
| 11 0                                                                                                | <del>-</del> 2                                                                               | C                                                     | -3                                                                                         | 214                                                                               | 8                                                                                        | 227                                                                                                                |
| 12 1                                                                                                | 8                                                                                            | 3                                                     | -2                                                                                         | 215                                                                               | 8                                                                                        | 237                                                                                                                |
| 13 -2                                                                                               | 5                                                                                            | 0                                                     | 1                                                                                          | 219                                                                               | Ö                                                                                        | 226                                                                                                                |
| 14 0                                                                                                | 0                                                                                            | 0                                                     | <del>-6</del>                                                                              | 220                                                                               | 6                                                                                        | 232                                                                                                                |
| 15 4                                                                                                | 8                                                                                            | o<br>o                                                | <del>-</del> 3                                                                             | 211                                                                               | 23                                                                                       | 251                                                                                                                |
| 16 1                                                                                                | 8                                                                                            | 1                                                     | -2                                                                                         | 227                                                                               | 2                                                                                        | 241                                                                                                                |
| 17 0                                                                                                | 10                                                                                           | 0                                                     | -2                                                                                         | 212                                                                               | 0                                                                                        | 224                                                                                                                |
| 18 1                                                                                                | 4                                                                                            | 1                                                     | 0                                                                                          | 221                                                                               | 0                                                                                        | 228                                                                                                                |
| 19 -1                                                                                               | 8                                                                                            | 2                                                     | 4                                                                                          | 204                                                                               | 0                                                                                        | 225                                                                                                                |
| 20 <b>-2</b>                                                                                        | 4                                                                                            | 1                                                     | 5                                                                                          | 208                                                                               | 0                                                                                        | 222                                                                                                                |
|                                                                                                     |                                                                                              |                                                       |                                                                                            |                                                                                   |                                                                                          |                                                                                                                    |
|                                                                                                     |                                                                                              |                                                       |                                                                                            |                                                                                   |                                                                                          |                                                                                                                    |
| EXPERIMENT 2                                                                                        | INITIAL                                                                                      | COND                                                  | <br>4 SUBJ                                                                                 | 2 PRE                                                                             | ED LENGTH                                                                                | O                                                                                                                  |
| EXPERIMENT 2 TRIAL X2                                                                               | INITIAL<br>X2D                                                                               | COND<br>X3                                            | 4 SUBJ<br>X3D                                                                              |                                                                                   | ED LENGTH<br>ITGL                                                                        | 0<br>P I                                                                                                           |
|                                                                                                     |                                                                                              |                                                       |                                                                                            | TIME                                                                              |                                                                                          | ΡI                                                                                                                 |
| TRIAL X2                                                                                            | X2D                                                                                          | Х3                                                    | X3D                                                                                        |                                                                                   | ITGL                                                                                     | _                                                                                                                  |
| TRIAL X2<br>1 16                                                                                    | X2D<br><del>-</del> 4                                                                        | ×3<br><del>-</del> 7                                  | X3D<br>16                                                                                  | TIME<br>246                                                                       | ITGL<br>180                                                                              | PI<br>460                                                                                                          |
| TRIAL X2<br>1 16<br>2 5                                                                             | X2D<br>-4<br>-13                                                                             | X3<br>-7<br>-2                                        | X3D<br>16<br>0                                                                             | TIME<br>246<br>290                                                                | ITGL<br>180<br>45                                                                        | PI<br>460<br>351                                                                                                   |
| TRIAL X2 1 16 2 5 3 -8                                                                              | X2D<br>-4<br>-13<br>8                                                                        | ×3<br>-7<br>-2<br>0                                   | X3D<br>16<br>0<br>3                                                                        | TIME<br>246<br>290<br>262                                                         | ITGL<br>180<br>45<br>15                                                                  | PI<br>460<br>351<br>292                                                                                            |
| TRIAL X2 1 16 2 5 3 -8 4 2                                                                          | X2D<br>-4<br>-13<br>8<br>8                                                                   | X3<br>-7<br>-2<br>0                                   | X3D<br>16<br>0<br>3                                                                        | 71ME<br>246<br>290<br>262<br>239                                                  | ITGL<br>180<br>45<br>15<br>0                                                             | PI<br>460<br>351<br>292<br>251                                                                                     |
| TRIAL X2 1 16 2 5 3 -8 4 2 5 -1                                                                     | X2D<br>-4<br>-13<br>8<br>8<br>-8                                                             | X3<br>-7<br>-2<br>0<br>0                              | X3D<br>16<br>0<br>3<br>0                                                                   | TIME<br>246<br>290<br>262<br>239<br>266                                           | ITGL<br>180<br>45<br>15<br>0<br>24                                                       | PI<br>460<br>351<br>292<br>251<br>301                                                                              |
| TRIAL X2 1 16 2 5 3 -8 4 2 5 -1 6 1 7 2 8 -1                                                        | X2D<br>-4<br>-13<br>8<br>8<br>-8<br>-8<br>10<br>4                                            | X3<br>-7<br>-2<br>0<br>0<br>-1<br>-1<br>-1<br>-2      | X3D<br>16<br>0<br>3<br>0<br>-10                                                            | TIME<br>246<br>290<br>262<br>239<br>266<br>219                                    | ITGL<br>180<br>45<br>15<br>0<br>24<br>18                                                 | PI<br>460<br>351<br>292<br>251<br>301<br>259                                                                       |
| TRIAL X2 1 16 2 5 3 -8 4 2 5 -1 6 1 7 2 8 -1 9 3                                                    | X2D<br>-4<br>-13<br>8<br>8<br>-8<br>8<br>10<br>4                                             | X3<br>-7<br>-2<br>0<br>0<br>-1<br>-1<br>-1<br>-2<br>2 | X3D<br>16<br>0<br>3<br>0<br>0<br>-10<br>-3                                                 | TIME<br>246<br>290<br>262<br>239<br>266<br>219<br>212<br>234<br>223               | 1TGL<br>180<br>45<br>15<br>0<br>24<br>18<br>12                                           | PI<br>460<br>351<br>292<br>251<br>301<br>259<br>242<br>254<br>248                                                  |
| TRIAL X2 1 16 2 5 3 -8 4 2 5 -1 6 1 7 2 8 -1 9 3 10 -1                                              | X2D<br>-4<br>-13<br>8<br>8<br>-8<br>8<br>10<br>4<br>10<br>8                                  | X3 -7 -2 0 0 -1 -1 -1 -2 0                            | X3D<br>16<br>0<br>3<br>0<br>0<br>-10<br>-3<br>0                                            | TIME<br>246<br>290<br>262<br>239<br>266<br>219<br>212<br>234<br>223<br>221        | 1TGL<br>180<br>45<br>15<br>0<br>24<br>18<br>12<br>14                                     | PI<br>460<br>351<br>292<br>251<br>301<br>259<br>242<br>254<br>248<br>232                                           |
| TRIAL X2 1 16 2 5 3 -8 4 2 5 -1 6 1 7 2 8 -1 9 3 10 -1 11 -2                                        | X2D<br>-4<br>-13<br>8<br>8<br>-8<br>10<br>4<br>10<br>8                                       | X3 -7 -2 0 0 -1 -1 -1 -2 0 0                          | X3D<br>16<br>0<br>3<br>0<br>-10<br>-3<br>0<br>6<br>0                                       | TIME<br>246<br>290<br>262<br>239<br>266<br>219<br>212<br>234<br>223<br>221<br>225 | 1TGL<br>180<br>45<br>15<br>0<br>24<br>18<br>12<br>14                                     | PI<br>460<br>351<br>292<br>251<br>301<br>259<br>242<br>254<br>248<br>232<br>236                                    |
| TRIAL X2 1 16 2 5 3 -8 4 2 5 -1 6 1 7 2 8 -1 9 3 10 -1 11 -2 12 -2                                  | X2D<br>-4<br>-13<br>8<br>8<br>-8<br>10<br>4<br>10<br>8<br>0                                  | X3 -7 -2 0 0 -1 -1 -1 -2 0 0 -1                       | X3D<br>16<br>0<br>3<br>0<br>-10<br>-3<br>0<br>6<br>0                                       | TIME 246 290 262 239 266 219 212 234 223 221 225 211                              | 1TGL<br>180<br>45<br>15<br>0<br>24<br>18<br>12<br>14                                     | PI<br>460<br>351<br>292<br>251<br>301<br>259<br>242<br>254<br>248<br>232<br>236<br>250                             |
| TRIAL X2 1 16 2 5 3 -8 4 2 5 -1 6 1 7 2 8 -1 9 3 10 -1 11 -2 12 -2 13 -1                            | X2D<br>-4<br>-13<br>8<br>8<br>-8<br>10<br>4<br>10<br>8<br>0<br>-1<br>2                       | X3 -7 -2 0 0 -1 -1 -1 -2 0 0 -1 -1                    | X3D<br>16<br>0<br>3<br>0<br>-10<br>-3<br>0<br>6<br>0<br>-1                                 | TIME 246 290 262 239 266 219 212 234 223 221 225 211 227                          | 1TGL<br>180<br>45<br>15<br>0<br>24<br>18<br>12<br>14<br>0<br>3<br>9                      | PI<br>460<br>351<br>292<br>251<br>301<br>259<br>242<br>254<br>248<br>232<br>236<br>250<br>230                      |
| TRIAL X2 1 16 2 5 3 -8 4 2 5 -1 6 1 7 2 8 -1 9 3 10 -1 11 -2 12 -2 13 -1 14 2                       | X2D<br>-4<br>-13<br>8<br>8<br>-8<br>10<br>4<br>10<br>8<br>0<br>-1<br>2                       | X3 -7 -2 0 0 -1 -1 -1 -2 0 0 -1 -1 -2                 | X3D<br>16<br>0<br>3<br>0<br>-10<br>-3<br>0<br>6<br>0<br>-1                                 | TIME 246 290 262 239 266 219 212 234 223 221 225 211 227 222                      | 1TGL<br>180<br>45<br>15<br>0<br>24<br>18<br>12<br>14<br>0<br>3<br>9<br>33<br>0<br>2      | PI<br>460<br>351<br>292<br>251<br>301<br>259<br>242<br>254<br>248<br>232<br>236<br>250<br>230<br>249               |
| TRIAL X2 1 16 2 5 3 -8 4 2 5 -1 6 1 7 2 8 -1 9 3 10 -1 11 -2 12 -2 13 -1 14 2 15 -1                 | X2D<br>-4<br>-13<br>8<br>8<br>-8<br>8<br>10<br>4<br>10<br>8<br>0<br>-1<br>2<br>12<br>9       | X3 -7 -2 0 0 -1 -1 -1 -2 0 0 -1 -1 -2 -1              | X3D<br>16<br>0<br>3<br>0<br>-10<br>-3<br>0<br>6<br>0<br>-1                                 | TIME 246 290 262 239 266 219 212 234 223 221 225 211 227 222 211                  | 1TGL<br>180<br>45<br>15<br>0<br>24<br>18<br>12<br>14<br>0<br>3<br>9<br>33<br>0<br>2      | PI<br>460<br>351<br>292<br>251<br>301<br>259<br>242<br>254<br>236<br>250<br>230<br>249<br>227                      |
| TRIAL X2 1 16 2 5 3 -8 4 2 5 -1 6 1 7 2 8 -1 9 3 10 -1 11 -2 12 -2 13 -1 14 2 15 -1                 | X2D<br>-4<br>-13<br>8<br>8<br>-8<br>8<br>10<br>4<br>10<br>8<br>0<br>-1<br>2<br>12<br>9       | X3 -7 -2 0 0 -1 -1 -1 -2 0 0 -1 -1 -2 -1 -2           | X3D<br>16<br>0<br>3<br>0<br>-10<br>-3<br>0<br>6<br>0<br>-1<br>0<br>9<br>4                  | TIME 246 290 262 239 266 219 212 234 223 221 225 211 227 222 211 220              | 1TGL<br>180<br>45<br>15<br>0<br>24<br>18<br>12<br>14<br>0<br>3<br>9<br>33<br>0<br>2      | PI<br>460<br>351<br>292<br>251<br>301<br>259<br>242<br>254<br>236<br>236<br>249<br>227<br>236                      |
| TRIAL X2 1 16 2 5 3 -8 4 2 5 -1 6 1 7 2 8 -1 9 3 10 -1 11 -2 12 -2 13 -1 14 2 15 -1 16 3 17 -1      | X2D<br>-44<br>-13<br>8<br>8<br>-8<br>10<br>4<br>10<br>8<br>0<br>-1<br>2<br>12<br>9<br>9      | X3 -7 -2 0 0 -1 -1 -1 -2 0 0 -1 -1 -2 -1 -2 -1 -2 1   | X3D<br>16<br>0<br>3<br>0<br>-10<br>-3<br>0<br>6<br>0<br>-1<br>0<br>9<br>4<br>0<br>-1       | TIME 246 290 262 239 266 219 212 234 223 221 225 211 227 222 211 220 218          | 1TGL<br>180<br>45<br>15<br>0<br>24<br>18<br>12<br>14<br>0<br>3<br>9<br>33<br>0<br>23     | PI<br>460<br>351<br>291<br>301<br>2542<br>2548<br>236<br>2497<br>236<br>223                                        |
| TRIAL X2 1 16 2 5 3 -8 4 2 5 -1 6 1 7 2 8 -1 9 3 10 -1 11 -2 12 -2 13 -1 14 2 15 -1 16 3 17 -1 18 1 | X2D<br>-44<br>-13<br>8<br>8<br>-8<br>10<br>4<br>10<br>8<br>0<br>-1<br>2<br>12<br>9<br>9<br>3 | X3 -7 -2 0 0 -1 -1 -1 -2 0 0 -1 -1 -2 -1 -2 -1 -2     | X3D<br>16<br>0<br>3<br>0<br>-10<br>-3<br>0<br>6<br>0<br>-1<br>0<br>9<br>4<br>0<br>-1<br>-2 | TIME 246 290 262 239 266 219 212 234 223 221 225 211 227 222 211 220 218 213      | 1TGL<br>180<br>45<br>15<br>0<br>24<br>18<br>12<br>14<br>0<br>3<br>9<br>33<br>0<br>2<br>3 | PI<br>460<br>351<br>292<br>251<br>301<br>259<br>242<br>254<br>236<br>250<br>249<br>227<br>236<br>227<br>236<br>237 |
| TRIAL X2 1 16 2 5 3 -8 4 2 5 -1 6 1 7 2 8 -1 9 3 10 -1 11 -2 12 -2 13 -1 14 2 15 -1 16 3 17 -1      | X2D<br>-44<br>-13<br>8<br>8<br>-8<br>10<br>4<br>10<br>8<br>0<br>-1<br>2<br>12<br>9<br>9      | X3 -7 -2 0 0 -1 -1 -1 -2 0 0 -1 -1 -2 -1 -2 -1 -2 1   | X3D<br>16<br>0<br>3<br>0<br>-10<br>-3<br>0<br>6<br>0<br>-1<br>0<br>9<br>4<br>0<br>-1       | TIME 246 290 262 239 266 219 212 234 223 221 225 211 227 222 211 220 218          | 1TGL<br>180<br>45<br>15<br>0<br>24<br>18<br>12<br>14<br>0<br>3<br>9<br>33<br>0<br>23     | PI<br>460<br>351<br>291<br>301<br>2542<br>2548<br>236<br>2497<br>236<br>223                                        |

| EXPERI                                             | MENT 2                                                                        | INITIAL                                                                                  | COND 4                                              | 4 SUBJ                                                                                                    | 3 PRI                                                                      | ED LENGTH                                                                           | O                                                                                                                                                             |
|----------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TRIAL                                              | X2                                                                            | X2D                                                                                      | х3                                                  | X3D                                                                                                       | TIME                                                                       | ITGL                                                                                | ΡI                                                                                                                                                            |
| 1                                                  | 2                                                                             | 12                                                                                       | 0                                                   | O                                                                                                         | 286                                                                        | 30                                                                                  | 332                                                                                                                                                           |
| 2                                                  | <del>-</del> 5                                                                | -12                                                                                      | O                                                   | ~~ <u>]</u>                                                                                               | 231                                                                        | 30                                                                                  | 283                                                                                                                                                           |
| 3                                                  | <b>∞</b> 7                                                                    | -15                                                                                      | 2                                                   | ···· 2                                                                                                    | 300                                                                        | 30                                                                                  | 362                                                                                                                                                           |
| 4                                                  | -12                                                                           | <del></del> 8                                                                            | 0                                                   | 4                                                                                                         | 289                                                                        | 15                                                                                  | 333                                                                                                                                                           |
| 5                                                  | 1                                                                             | 3                                                                                        | 1                                                   | 2                                                                                                         | 253                                                                        | 3                                                                                   | 264                                                                                                                                                           |
| 6                                                  | 1                                                                             | 3                                                                                        | 1                                                   | 1                                                                                                         | 254                                                                        | 9                                                                                   | 270                                                                                                                                                           |
| 7                                                  | 1                                                                             | 4                                                                                        | <del>-</del> 5                                      | <b>∞</b> 3                                                                                                | 232                                                                        | 8                                                                                   | 255                                                                                                                                                           |
| 8                                                  | 0                                                                             | 3                                                                                        | 0                                                   | 4                                                                                                         | 248                                                                        | 5                                                                                   | 260                                                                                                                                                           |
| 9                                                  | C                                                                             | 6                                                                                        | 0                                                   | 0                                                                                                         | 237                                                                        | Э                                                                                   | 243                                                                                                                                                           |
| 10                                                 | <b> 2</b>                                                                     | 8                                                                                        | 1                                                   | <b>-1</b>                                                                                                 | 230                                                                        | 5                                                                                   | 248                                                                                                                                                           |
| 11                                                 | Э                                                                             | <del>3</del>                                                                             | 0                                                   | 1                                                                                                         | 252                                                                        | 0                                                                                   | 256                                                                                                                                                           |
| 12                                                 | 7                                                                             | 5                                                                                        | 0                                                   | 2                                                                                                         | 228                                                                        | 0                                                                                   | 245                                                                                                                                                           |
| 13                                                 | 0                                                                             | 4                                                                                        | 0                                                   | 0                                                                                                         | 233                                                                        | 3                                                                                   | 240                                                                                                                                                           |
| 14                                                 | 0                                                                             | 6                                                                                        | 0                                                   | <del>-</del> 3                                                                                            | 229                                                                        | 2                                                                                   | 240                                                                                                                                                           |
| 15                                                 | -1                                                                            | 4                                                                                        | 0                                                   | ၁                                                                                                         | 234                                                                        | 0                                                                                   | 238                                                                                                                                                           |
| 16                                                 | ٥                                                                             | <b>~</b> 6                                                                               | 0                                                   | <b>~~</b> 2                                                                                               | 230                                                                        | 0                                                                                   | 238                                                                                                                                                           |
| 17                                                 | 0                                                                             | 9                                                                                        | 2                                                   | 3                                                                                                         | 221                                                                        | 3                                                                                   | 242                                                                                                                                                           |
| 18                                                 | 0                                                                             | 2                                                                                        | 0                                                   | 0                                                                                                         | 215                                                                        | 0                                                                                   | 217                                                                                                                                                           |
| 19                                                 | 2                                                                             | 3                                                                                        | -1                                                  | -8                                                                                                        | 230                                                                        | Ö                                                                                   | 246                                                                                                                                                           |
| 20                                                 | 1                                                                             | 8                                                                                        | <b>~</b> 2                                          | <del></del> 3                                                                                             | 216                                                                        | 0                                                                                   | 232                                                                                                                                                           |
|                                                    |                                                                               |                                                                                          |                                                     |                                                                                                           |                                                                            |                                                                                     |                                                                                                                                                               |
| באטבט זי                                           | MENT 2                                                                        | I 6: I T I A :                                                                           | CO. D.                                              | /. c 15 1                                                                                                 | 1 00                                                                       | ED LEVETH                                                                           | 20                                                                                                                                                            |
| EXPERI*                                            |                                                                               | INITIAL                                                                                  |                                                     | 4 SUBJ                                                                                                    | 1 PRI                                                                      |                                                                                     | 20                                                                                                                                                            |
| TRIAL                                              | X2                                                                            | XZD                                                                                      | ×3                                                  | X3D                                                                                                       | TIME                                                                       | ITGL                                                                                | ΡI                                                                                                                                                            |
| TRIAL<br>1                                         | <b>X2</b><br>0                                                                | X2D<br>-2                                                                                | ×3<br>-1                                            | X3D<br>2                                                                                                  | TIME<br>290                                                                | ITGL<br>45                                                                          | PI<br>341                                                                                                                                                     |
| TRIAL<br>1<br>2                                    | X2<br>0<br>0                                                                  | X2D<br>-2<br>0                                                                           | ×3<br>-1<br>0                                       | X3D<br>-2<br>8                                                                                            | 71ME<br>290<br>303                                                         | 1 TGL<br>45<br>15                                                                   | PI<br>341<br>326                                                                                                                                              |
| TRIAL<br>1<br>2<br>3                               | X2<br>0<br>0<br>2                                                             | X2D<br>-2<br>0<br>-1                                                                     | ×3<br>-1<br>0<br>-4                                 | X3D<br>-2<br>8<br>-2                                                                                      | 71ME<br>290<br>303<br>296                                                  | 1TGL<br>45<br>15<br>45                                                              | PI<br>341<br>326<br>351                                                                                                                                       |
| TRIAL<br>1<br>2<br>3<br>4                          | X2<br>0<br>0<br>2<br>4                                                        | X2D<br>-2<br>0<br>-1<br>-2                                                               | ×3<br>-1<br>0<br>-4<br>2                            | X3D<br>-2<br>8<br>-2<br>0                                                                                 | 71ME<br>290<br>303<br>296<br>227                                           | 1 TGL<br>45<br>15<br>45<br>0                                                        | PI<br>341<br>326<br>351<br>234                                                                                                                                |
| TRIAL<br>1<br>2<br>3<br>4<br>5                     | X2<br>0<br>0<br>2<br>4<br>-11                                                 | X2D<br>-2<br>0<br>-1<br>-2<br>8                                                          | ×3<br>-1<br>0<br>-4<br>2<br>6                       | X3D<br>-2<br>8<br>-2<br>0<br>-28                                                                          | 71ME<br>290<br>303<br>296<br>227<br>196                                    | 1TGL<br>45<br>15<br>45<br>0<br>12                                                   | PI<br>341<br>326<br>351<br>234<br>251                                                                                                                         |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6                | X2<br>0<br>0<br>2<br>4<br>-11<br>-2                                           | X2D<br>-2<br>0<br>-1<br>-2<br>8<br>4                                                     | ×3<br>-1<br>0<br>-4<br>2<br>6                       | X3D<br>-2<br>8<br>-2<br>0<br>-28<br>-2                                                                    | TIME<br>290<br>303<br>296<br>227<br>196<br>222                             | 1TGL<br>45<br>15<br>45<br>0<br>12<br>48                                             | PI<br>341<br>326<br>351<br>234<br>251<br>277                                                                                                                  |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7           | X2<br>0<br>0<br>2<br>4<br>-11<br>-2<br>-7                                     | X2D<br>-2<br>0<br>-1<br>-2<br>8<br>4<br>20                                               | ×3<br>-1<br>0<br>-4<br>2<br>6<br>0                  | X3D<br>-2<br>8<br>-2<br>0<br>-28<br>-2<br>-1                                                              | TIME<br>290<br>303<br>296<br>227<br>196<br>222<br>221                      | 1TGL<br>45<br>15<br>45<br>0<br>12<br>48<br>8                                        | PI<br>341<br>326<br>351<br>234<br>251<br>277<br>252                                                                                                           |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | X2<br>0<br>0<br>2<br>4<br>-11<br>-2<br>-7<br>-20                              | X2D<br>-2<br>0<br>-1<br>-2<br>8<br>4<br>20<br>6                                          | ×3 -1 0 -4 2 6 0 11                                 | X3D<br>-2<br>8<br>-2<br>0<br>-28<br>-2<br>-1<br>-18                                                       | TIME<br>290<br>303<br>296<br>227<br>196<br>222<br>221<br>174               | 1 TGL<br>45<br>15<br>45<br>0<br>12<br>48<br>8,<br>5                                 | PI<br>341<br>326<br>351<br>234<br>251<br>277<br>252<br>222                                                                                                    |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | X2<br>0<br>2<br>4<br>-11<br>-2<br>-7<br>-20                                   | X2D<br>-2<br>0<br>-1<br>-2<br>8<br>4<br>20<br>6<br>8                                     | x3<br>-1<br>0<br>-4<br>2<br>6<br>0<br>0<br>11<br>-2 | X3D<br>-2<br>8<br>-2<br>0<br>-28<br>-2<br>-1<br>-18                                                       | TIME<br>290<br>303<br>296<br>227<br>196<br>222<br>221<br>174<br>257        | 1 TGL<br>45<br>15<br>45<br>0<br>12<br>48<br>8<br>5                                  | PI<br>341<br>326<br>351<br>234<br>251<br>277<br>252<br>222<br>287                                                                                             |
| TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | X2<br>0<br>2<br>4<br>-11<br>-2<br>-7<br>-20<br>-1                             | X2D<br>-2<br>0<br>-1<br>-2<br>8<br>4<br>20<br>6<br>8<br>2                                | X3 -1 0 -4 2 6 0 11 -2 8                            | X3D<br>-2<br>8<br>-2<br>0<br>-28<br>-2<br>-1<br>-18<br>-1<br>-20                                          | TIME<br>290<br>303<br>296<br>227<br>196<br>222<br>221<br>174<br>257<br>179 | 1 TGL<br>45<br>15<br>45<br>0<br>12<br>48<br>8<br>5<br>18<br>27                      | PI<br>341<br>326<br>351<br>234<br>251<br>277<br>252<br>222<br>287<br>239                                                                                      |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11                      | X2<br>0<br>2<br>4<br>-11<br>-2<br>-7<br>-20<br>-1<br>-10<br>0                 | X2D<br>-2<br>0<br>-1<br>-2<br>8<br>4<br>20<br>6<br>8<br>2                                | X3 -1 0 -4 2 6 0 11 -2 8 -3                         | X3D<br>-2<br>8<br>-2<br>0<br>-28<br>-2<br>-1<br>-18<br>-1<br>-20<br>-18                                   | TIME 290 303 296 227 196 222 221 174 257 179 230                           | 1TGL<br>45<br>15<br>45<br>0<br>12<br>48<br>8<br>5<br>18<br>27                       | PI<br>341<br>326<br>351<br>234<br>251<br>277<br>252<br>287<br>239<br>257                                                                                      |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12                   | X2<br>0<br>2<br>4<br>-11<br>-2<br>-7<br>-20<br>-1<br>-10<br>0                 | X2D<br>-2<br>0<br>-1<br>-2<br>8<br>4<br>20<br>6<br>8<br>2<br>2                           | X3 -1 0 -4 2 6 0 11 -2 8 -3 1                       | X3D<br>-2<br>8<br>-2<br>0<br>-28<br>-2<br>-1<br>-18<br>-1<br>-20<br>-18                                   | TIME 290 303 296 227 196 222 221 174 257 179 230 232                       | 1 TGL<br>45<br>15<br>45<br>0<br>12<br>48<br>5<br>18<br>27<br>2                      | PI<br>341<br>326<br>351<br>234<br>251<br>277<br>252<br>287<br>257<br>236                                                                                      |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13                | X2<br>0<br>0<br>2<br>4<br>-11<br>-2<br>-7<br>-20<br>-1<br>-10<br>0<br>-2<br>1 | X2D<br>-2<br>0<br>-1<br>-2<br>8<br>4<br>20<br>6<br>8<br>2<br>2<br>4                      | X3 -1 0 -4 2 6 0 11 -2 8 -3 1 0                     | X3D<br>-2<br>8<br>-2<br>0<br>-28<br>-2<br>-1<br>-18<br>-1<br>-20<br>-18<br>-1                             | TIME 290 303 296 227 196 222 221 174 257 179 230 232 242                   | 1 TGL<br>45<br>15<br>45<br>0<br>12<br>48<br>5<br>18<br>27<br>20<br>5                | PI<br>341<br>326<br>351<br>251<br>257<br>252<br>287<br>257<br>2287<br>253<br>253                                                                              |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14             | X2<br>0<br>2<br>4<br>-11<br>-2<br>-7<br>-20<br>-1<br>-10<br>0                 | X2D<br>-2<br>0<br>-1<br>-2<br>8<br>4<br>20<br>6<br>8<br>2<br>2<br>2<br>4                 | X3 -1 0 -4 2 6 0 11 -2 8 -3 1 0 0                   | X3D<br>-2<br>8<br>-2<br>0<br>-28<br>-2<br>-1<br>-18<br>-1<br>-20<br>-18<br>-1                             | TIME 290 303 296 227 196 222 221 174 257 179 230 232 242 229               | 1 TGL<br>45<br>15<br>45<br>0<br>12<br>48<br>5<br>18<br>27<br>20<br>5                | PI<br>341<br>326<br>351<br>251<br>277<br>252<br>287<br>257<br>253<br>253<br>253<br>253                                                                        |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15          | X2<br>0<br>2<br>4<br>-11<br>-2<br>-7<br>-20<br>-1<br>-10<br>0                 | X2D<br>-2<br>0<br>-1<br>-2<br>8<br>4<br>20<br>6<br>8<br>2<br>2<br>2<br>4<br>0<br>0       | X3 -1 0 -4 2 6 0 11 -2 8 -3 1 0 0 0                 | X3D -2 8 -2 0 -28 -2 -1 -18 -1 -20 -18 -1 -1 -2                                                           | TIME 290 303 296 227 196 222 221 174 257 179 230 232 242 229 200           | 1 TGL<br>45<br>15<br>45<br>0<br>12<br>48<br>5<br>18<br>27<br>20<br>5<br>0<br>23     | PI<br>341<br>326<br>351<br>251<br>277<br>252<br>287<br>257<br>2287<br>257<br>252<br>257<br>252<br>253<br>253<br>253<br>253<br>253<br>253<br>253<br>253<br>253 |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16       | X2<br>0<br>2<br>4<br>-11<br>-2<br>-7<br>-20<br>-1<br>-10<br>0                 | X2D<br>-2<br>0<br>-1<br>-2<br>8<br>4<br>20<br>6<br>8<br>2<br>2<br>2<br>4<br>0<br>0<br>18 | X3 -1 0 -4 2 6 0 11 -2 8 -3 1 0 0 2                 | X3D -2 8 -2 0 -28 -2 -1 -18 -1 -20 -18 -1 -2 2 2                                                          | TIME 290 303 296 227 196 222 221 174 257 179 230 232 242 229 200 230       | 1TGL<br>45<br>15<br>45<br>0<br>12<br>48<br>5<br>18<br>27<br>20<br>5<br>0<br>23<br>0 | PI<br>341<br>351<br>251<br>257<br>252<br>287<br>257<br>257<br>257<br>257                                                                                      |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17    | X2<br>0<br>2<br>4<br>-11<br>-2<br>-7<br>-20<br>-1<br>-10<br>0                 | X2D<br>-2<br>0<br>-1<br>-2<br>8<br>4<br>20<br>6<br>8<br>2<br>2<br>2<br>4<br>0<br>0<br>18 | X3 -1 0 -4 2 6 0 11 -2 8 -3 1 0 0 2 0               | X3D -2 8 -2 0 -28 -2 -1 -18 -1 -20 -18 -1 -2 -1 -1 -2 -1                                                  | TIME 290 303 296 227 196 222 221 174 257 179 230 232 242 229 200 230 211   | 1TGL<br>45<br>15<br>45<br>0<br>12<br>48<br>5<br>18<br>27<br>20<br>5<br>0<br>23<br>0 | PI<br>3416<br>3512<br>2512<br>2522<br>2572<br>2572<br>2572<br>2572<br>2572<br>2                                                                               |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | X2<br>0<br>2<br>4<br>-11<br>-2<br>-7<br>-20<br>-1<br>-10<br>0<br>2<br>-2<br>2 | X2D<br>-20<br>-12<br>-8<br>420<br>68<br>22<br>40<br>00<br>18<br>-15                      | X3 -1 0 -4 2 6 0 11 -2 8 -3 1 0 0 2 0 0             | X3D<br>-2<br>8<br>-2<br>0<br>-28<br>-2<br>-1<br>-18<br>-1<br>-20<br>-18<br>-1<br>-1<br>0<br>-2<br>2<br>-1 | TIME 290 303 296 227 196 222 221 174 257 179 230 232 242 229 200 231 216   | 1 TGL<br>45<br>15<br>45<br>12<br>48<br>5<br>18<br>7<br>2<br>0<br>0<br>0<br>0        | PI<br>3416<br>3514<br>2577<br>2227<br>2576<br>2576<br>2576<br>2227<br>2257<br>2257                                                                            |
| TRIAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17    | X2<br>0<br>2<br>4<br>-11<br>-2<br>-7<br>-20<br>-1<br>-10<br>0                 | X2D<br>-2<br>0<br>-1<br>-2<br>8<br>4<br>20<br>6<br>8<br>2<br>2<br>2<br>4<br>0<br>0<br>18 | X3 -1 0 -4 2 6 0 11 -2 8 -3 1 0 0 2 0               | X3D -2 8 -2 0 -28 -2 -1 -18 -1 -20 -18 -1 -2 -1 -1 -2 -1                                                  | TIME 290 303 296 227 196 222 221 174 257 179 230 232 242 229 200 230 211   | 1TGL<br>45<br>15<br>45<br>0<br>12<br>48<br>5<br>18<br>27<br>20<br>5<br>0<br>23<br>0 | PI<br>3416<br>3512<br>2512<br>2522<br>2572<br>2572<br>2572<br>2572<br>2572<br>2                                                                               |

| EXPERIM<br>TRIAL<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | ENT 2<br>38 0<br>-12 2 0 0 1 1 0 2 0 0             | INITIAL X2D 11 12 -1 6 1 1 10 -2 0 -1 2 -2 4 1 8 4 0 6 9 0   | COND<br>X3<br>-4<br>-4<br>0<br>0<br>-1<br>0<br>-1<br>-1<br>0<br>1<br>1 | 4 SUBJ<br>X3D<br>5<br>-3<br>0<br>-2<br>0<br>-2<br>0<br>-2<br>0<br>-1<br>-1<br>0<br>-1<br>0 | 2 PR<br>TIME<br>247<br>214<br>219<br>225<br>216<br>223<br>221<br>203<br>237<br>208<br>218<br>212<br>218<br>214<br>222<br>207<br>207<br>223<br>213 | ED LENGTH ITGL 45 30 30 15 30 26 27 42 0 6 24 9 2 2 0 0 0 0 0 0           | 20<br>PI<br>356<br>264<br>252<br>248<br>255<br>251<br>216<br>229<br>217<br>233<br>210<br>218<br>231 |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| EXPERIM<br>TRIAL<br>1                                                                                                           | ENT 2<br>X2<br>1                                   | INITIAL<br>X2D<br>0                                          | COND (                                                                 | 4 SUBJ<br>X3D<br>-2                                                                        | 3 PR<br>TIME<br>244                                                                                                                               | ED LENGTH<br>ITGL<br>30                                                   | 20<br>PI<br>277                                                                                     |
| 2                                                                                                                               | -20                                                | -31                                                          | 0                                                                      | 1                                                                                          | 285                                                                                                                                               | 30                                                                        | 379                                                                                                 |
| 3                                                                                                                               | -1                                                 | <del></del> 6                                                | Ō                                                                      | -2                                                                                         | 241                                                                                                                                               | 30                                                                        | 232                                                                                                 |
| 4                                                                                                                               | -1                                                 | <del></del> 6                                                | 0                                                                      | 0                                                                                          | 236                                                                                                                                               | 45                                                                        | 289                                                                                                 |
| 5                                                                                                                               |                                                    | •                                                            |                                                                        | •                                                                                          | 200                                                                                                                                               |                                                                           |                                                                                                     |
|                                                                                                                                 | 0                                                  | . 2                                                          | Ö                                                                      | Ö                                                                                          | 255                                                                                                                                               | 9                                                                         | 266                                                                                                 |
| 6                                                                                                                               | 0<br>-4                                            |                                                              |                                                                        |                                                                                            |                                                                                                                                                   |                                                                           |                                                                                                     |
| 6<br>7                                                                                                                          | <b>4</b><br>O                                      | . 2<br>-10<br>0                                              | 0                                                                      | 0                                                                                          | 255<br>255<br>243                                                                                                                                 | 9<br>12<br>9                                                              | 266<br>285<br>253                                                                                   |
| 6<br>7<br>8                                                                                                                     | -4<br>0<br>-1 .                                    | . 2<br>-10                                                   | 0<br>0<br>-1<br>0                                                      | 0<br>-1                                                                                    | 255<br>255<br>243<br>236                                                                                                                          | 9<br>12                                                                   | 266<br>285<br>253<br>261                                                                            |
| 6<br>7<br>8<br>9                                                                                                                | 0<br>-1 ·                                          | . 2<br>-10<br>0<br>1<br>-4                                   | 0<br>0<br>-1<br>0                                                      | 0<br>-1<br>0<br>0<br>-1                                                                    | 255<br>255<br>243<br>236<br>248                                                                                                                   | 9<br>12<br>9<br>24                                                        | 266<br>285<br>253<br>261<br>256                                                                     |
| 6<br>7<br>8<br>9<br>10                                                                                                          | -4<br>0<br>-1 ·<br>-2<br>0                         | - 2<br>-10<br>0<br>1<br>-4<br>2                              | 0<br>0<br>-1<br>0<br>0                                                 | 0<br>-1<br>0<br>0<br>-1<br>0                                                               | 255<br>255<br>243<br>236<br>248<br>224                                                                                                            | 9<br>12<br>9<br>24<br>0<br>3                                              | 266<br>285<br>253<br>261<br>256<br>229                                                              |
| 6<br>7<br>8<br>9<br>10<br>11                                                                                                    | -4<br>0<br>-1 ·<br>-2<br>0                         | - 2<br>-10<br>0<br>1<br>-4<br>2                              | 0<br>0<br>-1<br>0<br>0<br>0                                            | 0<br>-1<br>0<br>0<br>-1<br>0                                                               | 255<br>255<br>243<br>236<br>248<br>224<br>234                                                                                                     | 9<br>12<br>9<br>24<br>0<br>3<br>2                                         | 266<br>285<br>253<br>261<br>256<br>229<br>240                                                       |
| 6<br>7<br>8<br>9<br>10<br>11<br>12                                                                                              | -4<br>0<br>-1<br>-2<br>0<br>1<br>2                 | 2<br>-10<br>0<br>1<br>-4<br>2<br>3<br>8                      | 0<br>0<br>-1<br>0<br>0<br>0                                            | 0<br>-1<br>0<br>-1<br>0<br>0                                                               | 255<br>255<br>243<br>236<br>248<br>224<br>234<br>220                                                                                              | 9<br>12<br>9<br>24<br>0<br>3<br>2                                         | 266<br>285<br>253<br>261<br>256<br>229<br>240<br>235                                                |
| 6<br>7<br>8<br>9<br>10<br>11<br>12                                                                                              | -4<br>0<br>-1<br>-2<br>0<br>1<br>2                 | - 2<br>-10<br>0<br>1<br>-4<br>2<br>3<br>8<br>-2              | 0<br>0<br>-1<br>0<br>0<br>0<br>0                                       | 0<br>-1<br>0<br>-1<br>0<br>-1<br>-2                                                        | 255<br>255<br>243<br>236<br>248<br>224<br>234<br>220<br>222                                                                                       | 9<br>12<br>9<br>24<br>0<br>3<br>2<br>2                                    | 266<br>285<br>253<br>261<br>256<br>240<br>235<br>232                                                |
| 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                                                        | -4<br>0<br>-1<br>-2<br>0<br>1<br>2<br>-1           | 2<br>-10<br>0<br>1<br>-4<br>2<br>3<br>8<br>-2<br>0           | 0<br>0<br>-1<br>0<br>0<br>0<br>0<br>1<br>-1                            | 0<br>-1<br>0<br>-1<br>0<br>-1<br>-2<br>-1                                                  | 255<br>255<br>243<br>236<br>248<br>224<br>234<br>220<br>222<br>214                                                                                | 9<br>12<br>9<br>24<br>0<br>3<br>2<br>2<br>3                               | 266<br>285<br>253<br>261<br>256<br>229<br>240<br>235<br>235<br>215                                  |
| 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                                                  | -4<br>0<br>-1<br>-2<br>0<br>1<br>2<br>-1<br>0      | 2<br>-10<br>0<br>1<br>-4<br>2<br>3<br>8<br>-2<br>0           | 0<br>0<br>-1<br>0<br>0<br>0<br>0<br>0<br>1<br>-1<br>0                  | 0<br>-1<br>0<br>-1<br>0<br>0<br>-1<br>-2<br>-1                                             | 255<br>255<br>243<br>236<br>248<br>224<br>234<br>220<br>222<br>214<br>235                                                                         | 9<br>12<br>9<br>24<br>0<br>3<br>2<br>2<br>3<br>0                          | 266<br>285<br>253<br>261<br>256<br>229<br>240<br>235<br>232<br>215<br>239                           |
| 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                                                            | -4<br>0<br>-1<br>-2<br>0<br>1<br>2<br>-1<br>0      | 2<br>-10<br>0<br>1<br>-4<br>2<br>3<br>8<br>-2<br>0           | 0<br>0<br>-1<br>0<br>0<br>0<br>0<br>1<br>-1                            | 0<br>-1<br>0<br>-1<br>0<br>0<br>-1<br>-2<br>-1<br>1                                        | 255<br>255<br>243<br>236<br>248<br>224<br>234<br>220<br>2214<br>235<br>220                                                                        | 9<br>12<br>9<br>24<br>0<br>3<br>2<br>2<br>3<br>0<br>0                     | 266<br>285<br>253<br>261<br>256<br>229<br>240<br>235<br>232<br>215<br>239<br>222                    |
| 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                                                      | -4<br>0<br>-1<br>-2<br>0<br>1<br>2<br>-1<br>0      | 2<br>-10<br>0<br>1<br>-4<br>2<br>3<br>8<br>-2<br>0<br>1      | 0<br>0<br>-1<br>0<br>0<br>0<br>0<br>1<br>-1<br>0<br>0                  | 0<br>-1<br>0<br>-1<br>0<br>-1<br>-2<br>-1<br>1<br>-1<br>0                                  | 255<br>255<br>243<br>236<br>248<br>224<br>234<br>220<br>222<br>214<br>235<br>220<br>224                                                           | 9<br>12<br>9<br>24<br>0<br>3<br>2<br>2<br>3<br>0<br>0<br>0<br>0<br>8      | 266<br>285<br>253<br>261<br>256<br>229<br>240<br>235<br>232<br>215<br>239<br>222<br>233             |
| 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17                                                                | -4<br>0<br>-1<br>-2<br>0<br>1<br>2<br>-1<br>0<br>1 | 2<br>-10<br>0<br>1<br>-4<br>2<br>3<br>8<br>-2<br>0<br>1<br>0 | 0<br>0<br>-1<br>0<br>0<br>0<br>0<br>1<br>-1<br>0<br>0                  | 0<br>-1<br>0<br>-1<br>0<br>-1<br>-2<br>-1<br>1<br>-1<br>0                                  | 255<br>243<br>236<br>248<br>224<br>234<br>220<br>222<br>214<br>235<br>220<br>224<br>219                                                           | 9<br>12<br>9<br>24<br>0<br>3<br>2<br>2<br>3<br>0<br>0<br>0<br>0<br>8<br>2 | 266<br>285<br>253<br>261<br>256<br>229<br>240<br>235<br>232<br>215<br>239<br>222<br>233<br>221      |
| 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                                                      | -4<br>0<br>-1<br>-2<br>0<br>1<br>2<br>-1<br>0      | 2<br>-10<br>0<br>1<br>-4<br>2<br>3<br>8<br>-2<br>0<br>1      | 0<br>0<br>-1<br>0<br>0<br>0<br>0<br>1<br>-1<br>0<br>0                  | 0<br>-1<br>0<br>-1<br>0<br>-1<br>-2<br>-1<br>1<br>-1<br>0                                  | 255<br>255<br>243<br>236<br>248<br>224<br>234<br>220<br>222<br>214<br>235<br>220<br>224                                                           | 9<br>12<br>9<br>24<br>0<br>3<br>2<br>2<br>3<br>0<br>0<br>0<br>0<br>8      | 266<br>285<br>253<br>261<br>256<br>229<br>240<br>235<br>232<br>215<br>239<br>222<br>233             |